Mathematics Homework: Calculus, Vectors, Sets, and Function Analysis

Verified

Added on  2023/06/08

|7
|1614
|101
Homework Assignment
AI Summary
This homework assignment presents solutions to a series of mathematical problems. Question 1 explores set operations, including intersections, unions, and the concept of the empty set, along with a number line representation. Question 2 investigates the properties of functions, differentiating between functions and non-functions based on their mapping characteristics. Question 3 delves into calculus, focusing on limit calculations, including indeterminate forms and the application of L'Hopital's rule. Question 4 explores vector operations, calculating unit vectors, angles between vectors using the dot product, and linear combinations. Question 5 examines set theory, including intersections, unions, and the concept of the empty set. Finally, Question 6 addresses function properties such as continuity, asymptotes, and piecewise functions.
Document Page
Question 1
a) Z : Set of Integers , k =2 ,1,0,1,2 C= {4 ,1,2,5,8 }
A B C={} an empty set
¿
( Z B ) ( A C ¿= { 1,2,3,4,5 } {[ 3,5 ] [4 ,1,2,5,8 ] }={1}
Number line:
BC={4 ,1,1,2,3,4,5,8 }
R ¿=¿
( R ¿ ) ( BC ) ={{4 ,1,1,2,3,4,5,8 }}
b) Consider the following three objects…which of these are functions, and why?
a) Wit h t h e given conditions , f ( x ) is NOT a FUNCTION because 4=±2.
Since A single element of 4 results into two elementst h e c odomain , f ( x ) is not a function .
b)
g ( x ) IS A FUNCTION because eac h elementdomain has aunique element Codomain.
c) h ( x ) IS NOT A FUNCTION .T h isis because some elementsdomain are not mapped ¿
respect elementcodomain . For example , w h en x=0 , h ( x ) does not exist .
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Question 2
a) lim
x 3
x2 4 X +3
X 26 X +9
If lim
x a¿f (x) lim
x a+ ¿f ( x)t hen t he limitdoes not exist.¿
¿¿
¿
x2 4 x +3
x26 x+9 = x1
x3
lim
x 3
x2 4 X +3
X 26 X +9 = lim
x 3 +¿ x1
x3 ¿
¿
x1
x3 = ( x1 )1
x3
lim
x a
[f ( x )g( x)]=lim
x a
f ( x)lim
x a
g(x )
lim
x 3+¿ x1
x3 = lim
x 3+¿ (x1 ) lim
x 3+¿ 1
x 3=2 ¿
¿ ¿
¿¿
¿
¿
lim
x 3¿ x24 X +3
X26 X +9 = ¿
¿
, hence t h e limit does not exist
b) lim
x π
2
sin2 x2 sin x +1
sin2 x5 sin x +4
sin2 x2 sin x+1
sin2 x5sin x +4 = sin x1
sin x4
Document Page
lim
x π
2
sin2 x2 sin x +1
sin2 x5 sin x +4 =lim
x π
2
sin x 1
sin x4 =
sin π
2 1
sin π
2 4
=0
c) lim
x
ln¿ ¿ ¿
x is positive w h en x .T hus| x|=x
T h e Limit C h ain Rule States t h at , if lim
u b
f ( u ) =L,lim
x a
g ( x ) =b ,f (x)is
continuous at x=b , t h en lim
x a
f (g ( x ) )=L
g ( x ) =ln ¿ ¿
lim
x
¿ ¿
lim
x
ln u=
Thus lim
x
ln¿ ¿ ¿
d) lim
x+
x24 x +3
x 626 x +9
Dividing t h e function by t h e high est denominator power , we have
1 4
x 3
x2
1 6
x + 9
x2
lim
x+
1 4
x 3
x2
1 6
x + 9
x2
= 100
100 =1
e) lim
x 0¿ x+ x2
x ¿
¿
Multiplying by t h e conjugate of x + x2 , we have x+ x2
x =
0
x x2
x
Document Page
lim
x 0¿ x+ x2
x = lim
x0¿
0
x x2
x = lim
x 0¿ 0
¿ 0¿¿
¿¿
¿
f) lim
x 0+¿ e ( 1
x ) (sin2
( 1
x )+cos2
( 1
x ) )¿
¿
lim
x 0+¿ e ( 1
x ) (sin2
( 1
x )+cos2
( 1
x ) )= lim
x 0+ ¿e( 1
x ) lim
x 0+¿ (sin2 1
x +cos 21
x ) ¿
¿¿
¿ ¿
¿ lim
x 0+¿ e( 1
x )=0 ¿
¿
lim
x 0+¿ (sin2 1
x +cos2 1
x )=1¿
¿
lim
x 0+¿ e ( 1
x ) ( sin2
( 1
x ) +cos2
( 1
x ) )=01=0 ¿
¿
Question 3
a) Let ( 8 ,6 ) be v
Vectiors¿ v areindicated as t v
T h us Vectos¿ v are indicated as t ( 8 ,6 )
¿ ( 8 t ,6 t ) ;{t R { 0 } }
A unit vector is t h e direction of t v is given by t v
¿t v ¿ = t v
( 8 t ) 2 + ( 6 t ) 2 = ( 8 t
10 , 6 t
10 )
¿ ( 4
5 , 3
5 )
T h us t h e vector of lengt h5 direction of v is givenby 5 ( 4
5 ,3
5 )
¿( 4 ,3)
b) Given t h e values of uv , w=2 [ ( 1,1,0 ) (1,0,1 ) ]= ( 2,2,0 ) ( 2,0,2 )
¿( 0,2 ,2)
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
u . w=||u||||w||cos θ
W h ere θ is an ´angle between uw .
||u||= 12 +12 + ( 0 ) 2= 2
||w||= 02 +22 + (2 )2=2 2
u . w= ( 1,1,0 ) . ( 0,2 ,2 )=2
T h us 2= 2 ( 2 2 ) cos θ
cos θ= 2
4 =1
2
θ=cos1 1
2 = π
3
c)
Let us assume t h at x anf y are scalar quantities . Additionally a is a linear combination of uv
suc h t h at ||a||= 3a . w=0 , we have t h at
a=xu+ yv
a= ( 2 x , x+ y , 2 y )
Given t h at a . w=0 , ( 2 x , x + y , 2 y ) . ( 1,2 ,3 ) =0
2 x+2 ( x + y )6 y =0
T h us 4 x4 y=0
x= y
Additionally ,|a|= 3 ,
3=||a||
2
( 2 x )2 + ( x + y ) 2 + ( 2 y ) 2=3
Given t h at x= y ,
Document Page
4 x2 + 4 x2+ 4 x2=3
12 x2=3
x=± 1
4 =± 1
2
y=x =± 1
2
T h us possible values of a are :
a=xu+ yu=xu+ xv
¿ x (u+v)
x [ ( 2,1,0 ) + ( 0,1,2 ) ] =x (2,2,2)
W h en x= 1
2 , a=1
2 ( 2,2,2 )=(1,1,1)
W h en x=1
2 , a=1
2 ( 2,2,2 ) =(1 ,1 ,1)
T h us possible values of a are ( 1,1,1 )(1 ,1 ,1)
Question 4
a) Suppose A= { 0,1 }B= { 0,1 , } , T h en AB have infinitely many numbers¿
A B={0,1}
b)
T h ere are numbers two sets t h at has infinitely many numbers w h o se unition is { 0,1 } . T h is is
because aof sets t h at have infinitely many numbers must have .
c) Suppose A= { 0,12,3,4 , }B= { 2,3,4 , } , t h en A ¿= { 0,1 } .
Question 5
Document Page
a) Suppose f ( x )=cot θ , t h en lim
x 0¿ cot θ , lim
x 0+¿ cot θf (0 )does not exist¿
¿¿
¿
b) T h ere is no function g ( x ) suc h g ( 0 ) , t h e rig h t¿ exist are different .
c) Suppose we have a function f ( x ) =
2
1+ex +1
( x2 ) ( x3 ) ( x5 ) ,t h en f ( x ) has 2 h orizontal
asymptotes at y=1 y =3 ,3 vertical asymptotes at x=2,35
d) A function cannot have more than 2 horizontal asymptotes. That is, the maximum
number of horizontal asymptotes that a function can have is 2. Thus you cannot create a
function with exactly 3 different asymptotes and three different vertical asymptotes.
e) Suppose we ha ve a piecewise f ( x ) = {0 ; x= 01
x ; ot h erwise } ,
t h en t h e function is discontinuousat every integer
Question 6
Suppose A= {100,2,3 } , B= { 0 ,200,2 } ,C= ( 0,0 ,300 ) an d D= {1,1,1 ) ,
T h en t h e ˙product between any two of t h ese four is negative . For Example ,
A . B=1001+21+31=95
chevron_up_icon
1 out of 7
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]