Electrical and Electronic Principles Circuit Theory TMA

Verified

Added on  2022/10/14

|13
|374
|15
Homework Assignment
AI Summary
This document presents a comprehensive solution to a Circuit Theory assignment, likely for an Electrical and Electronic Principles module. The assignment covers various fundamental concepts including Thevenin's theorem, Superposition theorem, and Norton's theorem, illustrating their application through detailed calculations and circuit analysis. It also includes solutions using mesh analysis and nodal analysis to solve complex circuits. Furthermore, the assignment explores topics like star-delta transformations and resonance in parallel circuits. The solutions are presented step-by-step with clear explanations, making it an excellent resource for students studying electrical engineering and circuit analysis. This assignment is a valuable resource available on Desklib, a platform providing students with access to past papers and solved assignments to aid in their studies.
Document Page
Running head: CIRCUIT THEORY 1
Circuit Theory
Name
Institution
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
CIRCUIT THEORY 2
Circuit Theory Homework
Question 1
Part a (Thevenin Theorem)
V 1= 2 × 415cos ( 100 πt ) , V 1 ( RMS )=415 90 °
V 2= 2 × 415sin ( 100 πt ) , V 2 ( RMS )=4150 °
We use the RMS values of V 1 and V 2
We remove the load and short the source voltages to obtain the circuit shown below.
Then apply the KCL node ZTh and calculate the Thevenin equivalent voltage V Th
V ThV 1
j 4 + V ThV 2
j 6 =0
V ThV 1
j 4 = V 2V Th
j6
( V ThV 1 ) j 6= ( V 2V Th ) j 4
V Th j 6V 1 j6=V 2 j 4V Th j 4
V Th j 6+V Th j 4=V 2 j 4 +V 1 j 6
V Th( j 6+ j 4)=(V 2 j 4 +V 1 j6)
V Th=(V 2 j 4+V 1 j 6)
j6+ j 4 = 415 0° ( 4 90 ° ) + 415 90 ° (6 90 °)
10 90 ° =299.2608 56.31°
ZTh= j4 Ω¿ j6 Ω= j 4 × j6
j 4 + j 6 = j 2.4=2.4 90 ° Ω
Document Page
CIRCUIT THEORY 3
The Thevenin equivalent circuit becomes:
ZLoad =50 ohms at 0.7 pf lag
ϕ =cos1 0.7=45.57 °
ZLoad =50 45.57 ° Ω
iTh= V Th
ZTh+ Z Load
= 299.2608 56.31°
2.4 90° +50 45.57° =5.7838 8.88 °
Part b (Superposition Theorem)
First, we remove V 2 and replace it with a short circuit then calculate V x using the voltage divider
rule as shown below.
V x= V 1
j 4+ j6¿ ZLoad
× j 6¿ ZLoad = 415 90 °
4 90 °+ 6 90 ° × 50 45.57 °
6 90 ° +50 45.57 °
× 6 90° ×50 45.57 °
6 90 ° +50 45.57 °
¿ 415 90 °
4 90 °+5.51 85.58° ×5.51 85.58°
¿ 240.6209 8 8.139° V
Document Page
CIRCUIT THEORY 4
i' = V x
ZLoad
=240.6209 88.139 °V
50 45.57 ° =4.8124 42.5692 ° A
Second, we remove V 1 and replace it with a short circuit then calculate V y using the voltage
divider rule as shown below.
V y= V 2
j6+ j 4¿ Z Load
× j 4¿ Z Load= 415 0°
6 90 ° + 4 90 ° ×50 45.57 °
4 90 °+ 50 45.57 °
× 4 90° ×50 45.57 °
4 90 ° +50 45.57 °
¿ 415 0 °
6 90 °+3.7785 86.97 ° × 3.7 785 86.97 °
¿ 160.4139 1.86 ° V
i' '= V y
ZLoad
= 160.41391.86 ° V
50 45.57 ° =3.208347.43 ° A
By superposition, the total current is:
I =i'+i' '=4.8124 42.5692° A+3.2083 47.43 ° A=5.7838 8.88° A
Part c (Norton’s Theorem)
First, we short circuit load and calculate the Norton current provided by both the voltage sources
V 1 and V 2 as follows:
I 1=V 1 (RMS )
X1
= 415 90 °
4 90° =103.75 0 ° A
I 2=V 2(RMS )
X2
= 4150 °
6 90 ° =69.1667 9 0 ° A
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
CIRCUIT THEORY 5
Then, we calculate the Norton reactance ZN
ZN =X1¿ X 2= j 4 × j6
j 4 + j 6 = j 2.4=2.4 90 ° Ω
The equivalent current is=I 1 +I2=103.75 0 °+69.1667 9 0 °=12 4 .692 33.69 ° A
The equivalent circuit is shown below.
ZLoad =50 ohms at 0.7 pf lag
ϕ =cos1 0.7=45.57 °
ZLoad =50 45.57 ° Ω
Then, using the current divider rule,
i=Ieqv × ZN
ZN + Z Load
=12 4 .69233.69 °× 2.4 90 °
2.4 90 °+50 45.57° =5. 7838 8.88 ° A
Question 2 Part a (Mesh Analysis)
The loop currents are I 1 , I2 , I3 I 4
Apply KVL in loops 1, 2, 3 and 4 to get:
Document Page
CIRCUIT THEORY 6
Loop 1:V 1 I 1 Z1 ( I 1I 2 ) Z4 =0
Loop 2: ( I 2I 1 ) Z4 + ( I 2I4 ) Z2+ ( I 2I 3 ) Z5=0
Loop 3 : ( I3 I2 ) Z5 +I 3 Z3+ V 2=0
Loop 4 :V 3+5 9 0 ° ( I4I2 )=0
120 0 °2 I 15 9 0 ° ( I1I 2 )=0
5 9 0 ° ( I2I1 )+ 59 0 ° ( I 2I 4 ) +4 9 0° ( I2I3 )=0
4 9 0 ° ( I 3I2 ) +4 I 3120 90 °=0
20 45 °+5 9 0° ( I4 I2 ) =0
5.385268.1986 ° I1 +5 9 0 ° I 2=120 0 ° . equation 1
5 9 0 ° I 1+ ( 59 0 °+5 9 0 °+ 4 9 0 ° ) I2 +4 9 0° I3+5 9 0 ° I4=0
5 9 0 ° I 1+ 6 9 0° I2+ 4 9 0 ° I 3 +5 9 0° I4=0 equation2
4 9 0° I2+ ( 4 9 0 ° +4 ) I3=120 90 ° equation 3
5 9 0 ° I 2+ 59 0 ° I4 =20 45 °
I 4= 20 45 ° +5 9 0° I2
59 0 ° =4 135 °+ I2 equation 4
Then we substitute equation 4 into equation 2 to get:
5 9 0 ° I 1+ 6 9 0° I2+ 4 9 0 ° I 3 +5 9 0° (4 135 ° +I2)=0
5 9 0 ° I 1+ ( 6 9 0°+5 9 0 ° ) I 2 +4 9 0 ° I 3=4 135 ° (5 9 0°)
5 9 0 ° I 1+ 19 0 ° I2 +4 9 0° I3=20 45 ° equation 5
In matrix form, equations 1,3, and 5 becomes:
[5.385268.1986 ° 5 9 0 ° 0
0 4 9 0° 5.6569 45 °
5 9 0 ° 19 0 ° 4 9 0 ° ] [ I1
I2
I3 ]=
[ 120 0 °
120 90 °
20 45 ° ]
Document Page
CIRCUIT THEORY 7
[ 2 j5 j5 0
0 j 4 4+ j 4
j5 j1 j4 ] [ I1
I2
I3 ]= [ 120
j120
14.142 j14.142 ]
Solving the matrix using Excel we get:
[ I1
I2
I3 ]=
[ 28.391 53.692 °
47.816 57.115°
2 8.536 50.742 ° ]
I =I1I2=28.39153.692°47.816 57.115°=19.5493 117.91 °
Question 2 Part b (Nodal Analysis)
We have principle notes x and y in the circuit that form a super node.
KCL at the super node gives us:
V xV 1
Z1
+ V x0
Z4
+ V xV y
Z2
+ V yV x
Z2
+ V y0
Z5
+ V yV 2
Z3
=0
V xV 1
Z1
+ V x
Z4
+ V y
Z5
+ V y V 2
Z3
=0
V x120 0 °
2 + V x
5 90 ° + V y
4 90 ° + V y120 9 0°
4 =0
V x ( 0.5+ j 0.2 ) +V y ( 0.25 j 0.25 )=60+ j 30 .equation 1
Applying KVL across the super node yields:
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
CIRCUIT THEORY 8
V xV y=20 45 ° equation 2
V x=20 45 °+ V y
(20 45 ° +V y ) ( 0.5+ j 0.2 )+ V y ( 0.25 j0.25 ) =60+ j 30
( 0.5+ j0.2 ) V y +V y ( 0.25 j 0.25 )= ( 60+ j30 ) ( 0.5+ j0.2 ) 20 45 °
V y ( 0.5+ j 0.2+0.25 j 0.25 )= ( 60+ j 30 ) ( 0.5+ j 0.2 ) 20 45 °
V y= ( 60+ j30 ) ( 0.5+ j0.2 ) 20 45 °
( 0.5+ j0.2+0.25 j 0.25 ) =78.8514 23.6383 °
V x=20 45 °+V y=20 45 ° +78.8514 23.6383 °=97.7493 27.91 °
I = V x
Z4
= 97.7493 27.91 °
5 90 ° =19.5499 117.91 °
Question 3 Part a
ZY =15+ j 15
Z=45+ j 4 5
We convert the star connected load into delta load. For a balanced 3-phase star connected load,
the equivalent ZY =3 ZY .
ZY =3 ZY =3 ( 15+ j1 5 ) =45+ j 4 5
Now the two delta connected loads in parallel give the equivalent delta connected load as:
ZEquivalent = ( 45+ j 4 5 ) ¿ ( 45+ j 4 5 ) = ( 45+ j 4 5 ) ( 45+ j 4 5 )
45+ j4 5+45+ j 4 5 = j 4050
90+ j 90 =22.5+ j22.5
Question 3 Part b
Document Page
CIRCUIT THEORY 9
ZEquivalentY = Z Equivalent
3 = 22.5+ j 22.5
3 =7.5+ j7.5
Question 3 Part c
ZY = Z
3 = 45+ j 4 5
3 =15+ j1 5
ZEquivalentY = ( 15+ j1 5 ) ¿ ( 15+ j1 5 ) = ( 15+ j1 5 ) ( 15+ j1 5 )
( 15+ j1 5 ) + ( 15+ j1 5 ) = j 450
30+ j 30 =7.5+ j 7.5
Question 3 Part d
V =415 0 °
I = V
Z Equivalent
= 415 0 °
22.5+ j 22.5 =13.042245°
P= ( 3V I¿ )= ( 3× 415 0 °× 13.0422 45° )
¿ (11481.67+ j 11.481.67)
P=11481.67 W
Question 4 Part a
KVLloop abef : V L1
d I1
dt M d I 2
dt =0
KVLloop ab cd ef :V L2
d I2
dt M d I1
dt =0
Question 4 Part b
Document Page
CIRCUIT THEORY 10
I =I1+ I2
dI
dt =d I1
dt + d I 2
dt
From part (a),
V L1
d I 1
dt M d I 2
dt =V L2
d I2
dt M d I 1
dt =0
L1
d I1
dt + M d I 2
dt =L2
d I2
dt + M d I 1
dt
L1
d I1
dt M d I1
dt =L2
d I 2
dt M d I2
dt
d I1
dt ( L1M ) = d I 2
dt ( L2M )
I1
I2
=
d I1
dt
d I2
dt
= ( L2M )
( L1M )
I1
I2
= ( L2M )
( L1M )
Question 4 Part c
We know that: I 1
I 2
= ( L2M )
( L1M ) I =I 1+ I2
I 1=I I2
The equivalent equation ¿V L1
d I 1
dt M d I2
dt =0 becomes :
V L1 ( dI
dt d I2
dt )M d I 2
dt =0
V L1
dI
dt +L1
d I2
dt M d I2
dt =0
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
CIRCUIT THEORY 11
V L1
dI
dt + ( L1M ) d I2
dt =0 equation 1
The equivalent equation ¿V L2
d I 2
dt M d I1
dt =0 becomes :
I 1=I I2
V L2
d I2
dt M ( dI
dt d I 2
dt ) =0
V L2
d I2
dt M dI
dt +M d I 2
dt =0
V M dI
dt +M d I2
dt L2
d I2
dt =0 V M dI
dt ( L2M ) d I2
dt =0 equation 2
¿ equation 1 , d I 2
dt =
L1
dI
dt V
L1M
Substituting this into equation 2 we get:
V M dI
dt ( L2M )
L1
dI
dt V
L1M =0
V M dI
dt (L1
dI
dt V ) ( L2M )
L1M =0 V M dI
dt
L1 L2
dI
dt L1 M dI
dt V L2VM
L1M =0
(V M dI
dt )(L1M )(L¿¿ 1 L2
dI
dt L1 M dI
dt V L2VM )
L1M =0 ¿
V L1VM L1 M dI
dt + M 2 dI
dt L1 L2
dI
dt + L1 M dI
dt +V L2VM
L1 M =0
dI
dt ( M 2L1 L2 )= (V L2 +V L1 2VM )
dI
dt
( M2L1 L2 )
1 =1
1 ( V L2 +V L12VM )
Document Page
CIRCUIT THEORY 12
dI
dt ( L1 L2 M 2
)=V ( L1+ L22 M )
dI
dt
( L1 L2M 2 )
( L1 +L22 M ) =V
We also see that dI
dt Lequivalent =V
Therefore , Lequivalent = ( L1 L2M 2 )
( L1 + L22 M )
Question 4 Part d
The minimum current in the parallel circuit flows under resonance when Lequivalent = 1
ω2 C
Lequivalent = 1
(2 π × 106 )2 ×109 =25.33 03 μH
M
L1 L2
=k=0.5 , L1 L2= L
M
L2 =0.5 , M
L =0.5 , M=0.5 L
Lequivalent = ( L1 L2M 2 )
( L1+L2 2 M ) = ( L2( 0.5 L)2 )
( 2 L2(0.5 L) ) =25.3303 μH
0.75 L2
L =25.3303 μH
0.75 L=25.3303 μH
L= 25.3303 μH
0.75 =33.7737 μH
Question 5 Part a
Primary winding current , I1= 200 kVA
415 V =481.927 7
Pf =cos =0.8 , =cos1 0.8
chevron_up_icon
1 out of 13
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]