Mathematics Assignment: Sequence, Series, Complex Numbers Solutions

Verified

Added on  2021/04/24

|10
|1152
|84
Homework Assignment
AI Summary
Document Page
Ans.1. (a) Here the first term is a= 2.6 and Common Ratio (r) =?
We have, ar= 4.68, ar^2 =8.424, ar^3= 15.1632
r=ar/a= 4.68/2.6= 1.8
r=ar^2/ar=8.424/4.68=1.8
r=ar^3/ar^2=15.1632/8.424=1.8
Therefore the First term is 2.6 and Common Ratio= 1.8
The recurrence System is ( ar(n1) )=¿2.6*(1.8)^(n-1) ; n=1,…..
(b) The closed form for this sequence is 2.6*(1.8)^(n-1) ; n=1,…..
(c) Tenth Term= a*r^(10-1) = 2.6*(1.8)^(9)=515.734
(d)
Let the number be ‘n’.
a*r^(n-1) ≤ 39000
or, 2.6*(1.8)^(n-1)≤39000
or, (1.8)^(n-1)≤15000
or, (n-1)ln(1.8)≤ln(15000)
or, n-1≤16.35
or, n≤17.35
Since ‘n’ should be a natural number, so it should be n=17
Ans.2. The sequence converges to -26
Reason:
lim
n
{52( 0.91 )n26 }
¿ lim
n
{52( 0.91 )n }26
=0-26 =-26
Ans.3. It is an Arithmetic Progression
Here 1st Term a= 6 (From Feb 2016)
And Common Difference = 4
Number of terms = 14
Therefore, the required number of people=
12+
n =1
14
{6+ ( n1 )4 }
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
= 12 +
n =1
14
{ 6 } +
n =1
14
{ ( n1 )4 }
= 12+6*14 +
n =1
14
{ n4 } -
n =1
14
{ 4 }
=12 +14*6+4*14*15/2-14*4
=460
Ans.4.
n=11
38
{ n3 3n2 }
=
n =1
38
{n33n2 } -
n =1
11
{n33n2 }
=
n =1
38
{n3 } -
n =1
38
{3n2 } -
n =1
11
{n3 } +
n =1
11
{3n2 }
=(38*39/2)^2 -3*38*39*77/6 – (11*12/2)^2 + 3*11*12*23/6
=549081-57057- 4356+ 1518
=489186
Ans.5. We have the 8th term as
14C8 *((3*a^2)^8)*(9*a^3)^(-6)
Therefore the required coefficient is
14C8*3^(-4)
Ans.8.(a) We have f(x)=( 1
4 + x)^(-1/4)
Therefore differentiating both sides w.r.t. x we get,
f (x )=(-1/4)( 1
4 + x)^(-5/4)
or, g(x)=(-4)f(x)= ( 1
4 + x)^(-5/4)
Now, we are having
f(x)=2 -2x+ 5 2
2 x^2 - 15 2
2 x^3 +….
Differentiating, both sides w.r.t. x and multiplying by -4 we get,
g(x)=(-4)f(x)= 42+202x -+902 x^2+…. Which is the required Taylor Series for g(x)= ( 1
4 + x)^(-5/4).
Document Page
(b)
We have f(x)=( 1
4 + x)^(-1/4)
Therefore integrating both sides w.r.t. x we get,
F(x)=(4/3)( 1
4 + x)^(3/4)
or, h(x)=F(x)=(4/3) ( 1
4 + x)^(3/4)
Now, we are having
f(x)=2 -2x+ 5 2
2 x^2 - 15 2
2 x^3 +….
Integrating, both sides w.r.t. x and multiplying by ¾ we get,
h(x)=F(x)= ¾ 2x – 3/8 2 x^2 + 5/3 2 x^3 – 15/8 2 x^4 , which is the required Taylor Series for
h(x)= ( 1
4 + x)^(3/4).
Ans.9.
The required equation is:
z^2 – (3/4 +2i +3/4 -2i)z + (3/4 + 2i)(3/4-2i)=0
or, z^2 –(6/4)z + (73/16)=0
Ans.10.
z^4 = -23-2i
= -2(3 + i)
=-4( 3
2 + i
2)
=(2i)^2 (cos(π/6)+sin(π/6))
=((2i)^2)*(e^(iπ/6))
Or, z^2 = ±(2*i)*(e^(iπ/12))
Or, z= ±((2*i))*(e^(iπ/24))
Document Page
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Ans.6. (a)
(b)
(d) q(x) is better approximation than p(x) as q(x) gives finer approximations than p(x).
Ans. No. 6(c) is done at the end
Ans.7. (a)
(i)
f(0)= 1 f (0)=0
f′′(0)=- 5 *log(e) f′′′(0)=0
f4(0)= ((5* log (e))^2)/2 f5(0)=0
f6(0)= - ((5* log (e))^3)/6 f7(0)=0
f8(0) = ((5* log (e))^4)/24
Document Page
Therefore, the required Taylor Series is:
T(x)= 1 - 5 *log(e) * x^2 + ((5* log (e))^2)/2 * x^4 - ((5* log (e))^3)/6 * x^6 + ((5* log (e))^4)/24 *
x^8+ ……
(ii) The interval of validity for the series is
|-5*x^2|1
or, |x^2|1/5
or, - 1
5 x 1
5
(b) (i) 5
2 x +3 = 5
2 x +52 = 5
2(x1)+5 = 1
2(x1)/5+1 =
1
1+ 2 ( x1 )
5
(ii) f(1)= 1
f(1)= -(2/5)
f′′(1)= (4/25)
f′′′(1)= -(8/125)
Therefore the required Taylor Polynomial is
T(x)= 1 -(2/5) * (x-1) + (4/25) * (x-1)^2 - (8/125) * (x-1)^3 + ……
(iii)
The interval of validity is:
| 2(x1)
5 |1
or, |x-1| 5
2
or, -5
2 ≤x-1≤ 5
2
or, -3
2 ≤x≤ 7
2
Ans.11.
L.H.S.=
Document Page
(sinΘ)^4= ( 1
2i )^4 (e^(i*Θ)- e^(-i*Θ) )^4
= 1
16 ( (e^(2*i* Θ))^2+ (e^(-2*i* Θ))^2 + 2^2 – 2* (e^(2*i* Θ))*2 – 2* (e^(-2*i* Θ)) +6)
= 1
16( (e^(4*i* Θ))+ (e^(-4*i* Θ) +6 – 4 * (e^(2*i* Θ)) – 4* (e^(-2*i* Θ)))
= 1
16{ei4θ +ei4θ4ei2θ4ei2θ +6 }
R.H.S.= 1
8 (cos(4*Θ)- 4*cos(2*Θ)+ 3)
= 1
8 {1
2 ( ei4Θ +ei4Θ ) 4
2 ( ei2Θ+ ei2Θ ) +3 }
=
1
8 1
2 {ei4θ +ei4θ4ei2θ4ei2θ +6 }
= 1
16{ei4θ +ei4θ4ei2θ4ei2θ +6 }
L.H.S.= R.H.S.
Ans.6. (c)
Graph of f:
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Graph of p:
Document Page
Graph of q:
Document Page
chevron_up_icon
1 out of 10
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]