1ME606 Digital Signal Processing: A Practical Analysis using MATLAB
VerifiedAdded on 2025/08/25
|23
|1292
|401
AI Summary
Desklib provides solved assignments and past papers to help students succeed.

1
ME606 Digital Signal Processing
Student name:
Student id:
ME606 Digital Signal Processing
Student name:
Student id:
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

2
Contents
1. Introduction:.........................................................................................................................................................4
2. Part A: System Analysis.......................................................................................................................................5
1)...............................................................................................................................................................................5
2)...............................................................................................................................................................................6
3)...............................................................................................................................................................................6
4)...............................................................................................................................................................................6
3. Part B: Analyzing a system in Z and time domain...............................................................................................7
Given,...........................................................................................................................................................................7
1)...............................................................................................................................................................................7
2)...............................................................................................................................................................................7
3)...............................................................................................................................................................................7
4)...............................................................................................................................................................................8
5).............................................................................................................................................................................10
6).............................................................................................................................................................................10
8).............................................................................................................................................................................10
4. Part C: image decimation Using MATLAB.......................................................................................................11
1).............................................................................................................................................................................12
5. Part D: Signal decimation and interpolation in MATLAB................................................................................13
1).............................................................................................................................................................................13
2).............................................................................................................................................................................13
3).............................................................................................................................................................................13
5).............................................................................................................................................................................14
6).............................................................................................................................................................................15
7).............................................................................................................................................................................15
8).............................................................................................................................................................................15
9).............................................................................................................................................................................15
10)...........................................................................................................................................................................15
11)...........................................................................................................................................................................15
12)...........................................................................................................................................................................17
13)...........................................................................................................................................................................18
14)...........................................................................................................................................................................18
15)...........................................................................................................................................................................19
6. Part E: System Eigen function and Eigen Value................................................................................................19
1).............................................................................................................................................................................19
2).............................................................................................................................................................................19
3).............................................................................................................................................................................19
4).............................................................................................................................................................................20
Contents
1. Introduction:.........................................................................................................................................................4
2. Part A: System Analysis.......................................................................................................................................5
1)...............................................................................................................................................................................5
2)...............................................................................................................................................................................6
3)...............................................................................................................................................................................6
4)...............................................................................................................................................................................6
3. Part B: Analyzing a system in Z and time domain...............................................................................................7
Given,...........................................................................................................................................................................7
1)...............................................................................................................................................................................7
2)...............................................................................................................................................................................7
3)...............................................................................................................................................................................7
4)...............................................................................................................................................................................8
5).............................................................................................................................................................................10
6).............................................................................................................................................................................10
8).............................................................................................................................................................................10
4. Part C: image decimation Using MATLAB.......................................................................................................11
1).............................................................................................................................................................................12
5. Part D: Signal decimation and interpolation in MATLAB................................................................................13
1).............................................................................................................................................................................13
2).............................................................................................................................................................................13
3).............................................................................................................................................................................13
5).............................................................................................................................................................................14
6).............................................................................................................................................................................15
7).............................................................................................................................................................................15
8).............................................................................................................................................................................15
9).............................................................................................................................................................................15
10)...........................................................................................................................................................................15
11)...........................................................................................................................................................................15
12)...........................................................................................................................................................................17
13)...........................................................................................................................................................................18
14)...........................................................................................................................................................................18
15)...........................................................................................................................................................................19
6. Part E: System Eigen function and Eigen Value................................................................................................19
1).............................................................................................................................................................................19
2).............................................................................................................................................................................19
3).............................................................................................................................................................................19
4).............................................................................................................................................................................20

3
5).............................................................................................................................................................................20
6).............................................................................................................................................................................20
References:.................................................................................................................................................................22
Table of Figures
Figure 1: ROC in z-plane.............................................................................................................................................7
Figure 2: Magnitude and phase frequency response.................................................................................................8
Figure 3: Impulse response......................................................................................................................................10
Figure 4: Original image...........................................................................................................................................11
Figure 5: Decimated with drv =4∧drh=4............................................................................................................11
Figure 6: Decimation with drv =8∧drh=8............................................................................................................11
Figure 7: First 200 samples......................................................................................................................................12
Figure 8: Power spectrum using periodogram.........................................................................................................13
Figure 9: Power spectrum using pwelch..................................................................................................................13
Figure 10: Power spectrum of convolve image........................................................................................................14
Figure 11: Cubic spline interpolation signal.............................................................................................................16
Figure 12: Power spectrum of cubic spline signal....................................................................................................16
Figure 13: Spectrum of filter signal..........................................................................................................................18
Figure 14: Amplitude of system...............................................................................................................................19
Figure 15: Real and imaginary parts of complex distribytion...................................................................................20
5).............................................................................................................................................................................20
6).............................................................................................................................................................................20
References:.................................................................................................................................................................22
Table of Figures
Figure 1: ROC in z-plane.............................................................................................................................................7
Figure 2: Magnitude and phase frequency response.................................................................................................8
Figure 3: Impulse response......................................................................................................................................10
Figure 4: Original image...........................................................................................................................................11
Figure 5: Decimated with drv =4∧drh=4............................................................................................................11
Figure 6: Decimation with drv =8∧drh=8............................................................................................................11
Figure 7: First 200 samples......................................................................................................................................12
Figure 8: Power spectrum using periodogram.........................................................................................................13
Figure 9: Power spectrum using pwelch..................................................................................................................13
Figure 10: Power spectrum of convolve image........................................................................................................14
Figure 11: Cubic spline interpolation signal.............................................................................................................16
Figure 12: Power spectrum of cubic spline signal....................................................................................................16
Figure 13: Spectrum of filter signal..........................................................................................................................18
Figure 14: Amplitude of system...............................................................................................................................19
Figure 15: Real and imaginary parts of complex distribytion...................................................................................20
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

4
1. Introduction:
The purpose of this study is to evaluate different signal processing techniques by practical implementation on
Matlab. For the course of this assignment, the concept of interpolation and decimation were focused. In first
part, system analysis is done by finding ROC of given system and then proving main signal processing properties
for this system. Second section included analyzing of system in both time and z-domain. Third part included the
practical analysis of image decimation technique by using different values. Fourth part consist of techniques to
verify both interpolation and decimation of signals, this section included detail analysis on both techniques. Final
part consists of Eigen values and system Eigen functions.
1. Introduction:
The purpose of this study is to evaluate different signal processing techniques by practical implementation on
Matlab. For the course of this assignment, the concept of interpolation and decimation were focused. In first
part, system analysis is done by finding ROC of given system and then proving main signal processing properties
for this system. Second section included analyzing of system in both time and z-domain. Third part included the
practical analysis of image decimation technique by using different values. Fourth part consist of techniques to
verify both interpolation and decimation of signals, this section included detail analysis on both techniques. Final
part consists of Eigen values and system Eigen functions.
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

5
2. Part A: System Analysis
1)
h(n)=an u(n) ,∨a∨¿ 1
Taking z-transform
h(z )= ∑
n=−∞
∞
x [ n ] z−n
h( z )= ∑
n=−∞
∞
an z−n
h ( z )= ∑
n=−∞
∞
¿ ¿
h( z )= 1
1−a z−1
h( z )= z
z−a
For convergence
¿ a z−1∨¿ 1
So ROC is
¿ z∨¿∨α∨¿
If
¿ a z−1∨≥ 1
h(z ) doesn’t converge
From this diagram ROC can be seen, that is ¿ z∨¿∨a∨.
All poles lie inside unit circle, so this system is stable.
-1 1
2. Part A: System Analysis
1)
h(n)=an u(n) ,∨a∨¿ 1
Taking z-transform
h(z )= ∑
n=−∞
∞
x [ n ] z−n
h( z )= ∑
n=−∞
∞
an z−n
h ( z )= ∑
n=−∞
∞
¿ ¿
h( z )= 1
1−a z−1
h( z )= z
z−a
For convergence
¿ a z−1∨¿ 1
So ROC is
¿ z∨¿∨α∨¿
If
¿ a z−1∨≥ 1
h(z ) doesn’t converge
From this diagram ROC can be seen, that is ¿ z∨¿∨a∨.
All poles lie inside unit circle, so this system is stable.
-1 1

6
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

7
2)
Prove:
Let ud is the delay.
ud ( t ) =u (t+ δ)
h( t)=at u(t)
h1 (t )=at ud (t )
h1 (t )=at u (t+ δ)
h2 ( t )=h ( t+δ )
h2 ( t ) =at + δ u ( t+ δ )
Since h1 ( t ) ≠ h2 ( t )
So this is not time invariant system
3)
The system is said to be memoryless if at any value n1 the value of output at n1 depends only on current
value of input.
h(n)=an u(n) ,∨a∨¿ 1
This is memory less system as output at any given point only depend on current input.
4)
h ( n ) = {0. 2n , 0 ≤n ≤ 4
0 , otherwise
h ( n ) =∑
n=0
5
( 1
4 )n
z−n
¿ ( 1
4 ) 0
z0 +( 1
4 )
−1
z−1 +( 1
4 )
−2
z−2 +( 1
4 )
−3
z−3
( 1
4 ) 4
z−4
¿ 1+ 1
4 z−1+ 1
16 z−2+ 1
64 z−3 + 1
256 z−4
2)
Prove:
Let ud is the delay.
ud ( t ) =u (t+ δ)
h( t)=at u(t)
h1 (t )=at ud (t )
h1 (t )=at u (t+ δ)
h2 ( t )=h ( t+δ )
h2 ( t ) =at + δ u ( t+ δ )
Since h1 ( t ) ≠ h2 ( t )
So this is not time invariant system
3)
The system is said to be memoryless if at any value n1 the value of output at n1 depends only on current
value of input.
h(n)=an u(n) ,∨a∨¿ 1
This is memory less system as output at any given point only depend on current input.
4)
h ( n ) = {0. 2n , 0 ≤n ≤ 4
0 , otherwise
h ( n ) =∑
n=0
5
( 1
4 )n
z−n
¿ ( 1
4 ) 0
z0 +( 1
4 )
−1
z−1 +( 1
4 )
−2
z−2 +( 1
4 )
−3
z−3
( 1
4 ) 4
z−4
¿ 1+ 1
4 z−1+ 1
16 z−2+ 1
64 z−3 + 1
256 z−4
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

8
ROC : z −plane excluding z=0
This is not stable system, its poles lies outside the unity circle.
3. Part B: Analyzing a system in Z and time domain
Given,
h ( n ) = 1−0.2 z−1
(1−0.5 z−1 )(1−0.3 z−1) + 2
(1−2 z−1 )
1)
Zeros: [ −3
0.2 ]
Poles: [ 1
0.5 , 1
0.3 , 1
2 ]
The ROC of above transfer function is shown
Figure 1: ROC in z-plane
As not all poles lies inside unit circle, so this system is not stable.
2)
ROC : z −plane excluding z=0
This is not stable system, its poles lies outside the unity circle.
3. Part B: Analyzing a system in Z and time domain
Given,
h ( n ) = 1−0.2 z−1
(1−0.5 z−1 )(1−0.3 z−1) + 2
(1−2 z−1 )
1)
Zeros: [ −3
0.2 ]
Poles: [ 1
0.5 , 1
0.3 , 1
2 ]
The ROC of above transfer function is shown
Figure 1: ROC in z-plane
As not all poles lies inside unit circle, so this system is not stable.
2)

9
As not all poles lies inside unit circle, so this system is not stable.
3)
∑
k=0
N
ak y [ n−k ]=¿∑
k=0
N
bk x [ n−k ] ¿
Sol:
h ( n ) = 1−0.2 z−1
(1−0.5 z−1 )(1−0.3 z−1) + 2
(1−2 z−1 )
h ( n ) = 3−0.2 z−1
(1−0.5 z−1−0.3 z−1 +0.15 z−2 )(1−2 z−1)
h ( n ) = 3−0.2 z−1
( 1−0.8 z−1+ 0.15 z−2 ) ( 1−2 z−1 )
h ( n ) = 3−0.2 z−1
(1−2.8 z−1 +1.75 z−2−0.3 z−3)
2 x [ n ] +0.2 x [ n−1 ]= y [n ] −2.8 y [ n−1 ]+1.75 [ n−2 ] −0.3 y [n−3 ]
Where a & b are the coefficients.
4)
As not all poles lies inside unit circle, so this system is not stable.
3)
∑
k=0
N
ak y [ n−k ]=¿∑
k=0
N
bk x [ n−k ] ¿
Sol:
h ( n ) = 1−0.2 z−1
(1−0.5 z−1 )(1−0.3 z−1) + 2
(1−2 z−1 )
h ( n ) = 3−0.2 z−1
(1−0.5 z−1−0.3 z−1 +0.15 z−2 )(1−2 z−1)
h ( n ) = 3−0.2 z−1
( 1−0.8 z−1+ 0.15 z−2 ) ( 1−2 z−1 )
h ( n ) = 3−0.2 z−1
(1−2.8 z−1 +1.75 z−2−0.3 z−3)
2 x [ n ] +0.2 x [ n−1 ]= y [n ] −2.8 y [ n−1 ]+1.75 [ n−2 ] −0.3 y [n−3 ]
Where a & b are the coefficients.
4)
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

10
Figure 2: Magnitude and phase frequency response
Figure 2: Magnitude and phase frequency response
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

11
5)
The above transfer function is all pass filter.
6)
Using Partial fraction decomposition
h ( n ) = 1−0.2 z−1
(1−0.5 z−1 )(1−0.3 z−1) + 2
(1−2 z−1 )
h ( n ) = 3−0.2 z−1
(1−0.5 z−1 )(1−0.3 z−1)(1−2 z−1)
3−0.2 z−1
(1−0.5 z−1 )(1−0.3 z−1 )(1−2 z−1) = A
(1−0.5 z−1)+ B
(1−0.3 z−1 ) + C
(1−2 z−1 )
There are three poles:
z−1= 1
0.5 , 1
0.3 , 1
2
Putting z−1= 1
0.5
3−0.2 ( 1
0.5 )=B ( 1−2 ( 1
0.5 ) )( 1−0.3 ( 1
0.5 ) )
B=−2.166
Putting z−1= 1
0.3
3−0.2 ( 1
0.3 )=B ( 1−0.5 ( 1
0.3 ))( 1−2 ( 1
0.3 ) )
C=0.654
Putting z−1= 1
2
3−0.2 ( 1
2 )=B ( 1−0.5 ( 1
2 ) )( 1−0.3 ( 1
2 ))
A=2.169
3−0.2 z−1
(1−0.5 z−1 )(1−0.3 z−1 )(1−2 z−1) = 2.169
(1−0.5 z−1)+ −2.166
(1−0.3 z−1 ) + 0.654
(1−2 z−1 )
5)
The above transfer function is all pass filter.
6)
Using Partial fraction decomposition
h ( n ) = 1−0.2 z−1
(1−0.5 z−1 )(1−0.3 z−1) + 2
(1−2 z−1 )
h ( n ) = 3−0.2 z−1
(1−0.5 z−1 )(1−0.3 z−1)(1−2 z−1)
3−0.2 z−1
(1−0.5 z−1 )(1−0.3 z−1 )(1−2 z−1) = A
(1−0.5 z−1)+ B
(1−0.3 z−1 ) + C
(1−2 z−1 )
There are three poles:
z−1= 1
0.5 , 1
0.3 , 1
2
Putting z−1= 1
0.5
3−0.2 ( 1
0.5 )=B ( 1−2 ( 1
0.5 ) )( 1−0.3 ( 1
0.5 ) )
B=−2.166
Putting z−1= 1
0.3
3−0.2 ( 1
0.3 )=B ( 1−0.5 ( 1
0.3 ))( 1−2 ( 1
0.3 ) )
C=0.654
Putting z−1= 1
2
3−0.2 ( 1
2 )=B ( 1−0.5 ( 1
2 ) )( 1−0.3 ( 1
2 ))
A=2.169
3−0.2 z−1
(1−0.5 z−1 )(1−0.3 z−1 )(1−2 z−1) = 2.169
(1−0.5 z−1)+ −2.166
(1−0.3 z−1 ) + 0.654
(1−2 z−1 )

12
8)
h ( n ) = z +1 .2−1 .15 z−1 +0 . 85 z−2 −0 . 8 z−3 −0 .15 z− 4
1−0 . 8 z−1+0 . 15 z−2
Matlab Code
nominator=[1 1.2−1.15 0.85−0.8−0.15 ];
denominator=[1−0.8−0.15];
H=tf (nominator , denominator);
impz (nominator , denominator );
Figure 3: Impulse response
4. Part C: image decimation Using MATLAB
In this section, you will see the effect of down sampling on a picture.
8)
h ( n ) = z +1 .2−1 .15 z−1 +0 . 85 z−2 −0 . 8 z−3 −0 .15 z− 4
1−0 . 8 z−1+0 . 15 z−2
Matlab Code
nominator=[1 1.2−1.15 0.85−0.8−0.15 ];
denominator=[1−0.8−0.15];
H=tf (nominator , denominator);
impz (nominator , denominator );
Figure 3: Impulse response
4. Part C: image decimation Using MATLAB
In this section, you will see the effect of down sampling on a picture.
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide
1 out of 23
Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
Copyright © 2020–2025 A2Z Services. All Rights Reserved. Developed and managed by ZUCOL.
