Electrical Engineering: Transient Analysis and Stability Homework

Verified

Added on  2022/09/27

|13
|1513
|19
Homework Assignment
AI Summary
This document presents a comprehensive solution to an electrical engineering assignment focusing on transient analysis, stability, and surge protection. The solution begins with an analysis of synchronous generators, including equations for rotor angle and generator frequency, and calculations for critical clearing time and angle. It then provides MATLAB code for simulating system behavior, including frequency and rotor angle variations. The assignment further explores impediments to adopting renewable energy resources in existing grids, along with potential solutions. MATLAB code is used to analyze the impact of system parameters, such as inertia constant (H) and damping coefficient (D), on frequency response. The document also provides a detailed discussion on the impact of H and D on frequency and offers conclusions. Figures and graphs are included to illustrate the results, and references are provided for further reading.
Document Page
Electrical Engg.
Transient analysis stability and surge protection
Student Name –
Student ID -
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Solution 1 a) Synchronous Generator:
Equation describing motion of rotor angle and the generator frequency :
2 H dw/dt = J d2θ / dt2
. w = generator frequency
. θ = Rotor angle
H = inertia constant
J =Total moment of inertia
b) Critical Angle = 0 degree
Critical clearing time = 0.4 seconds
Solution 1) c)
a)
Matlab Code :
E = 1.5;
V = 1;
Document Page
X = 10;
Pm = 0.6 ;
H = 9.94;
D = 0.16;
f0 = 50;
Pmax = E*V/X;
d0 = asin (Pm/Pmax);
Ps = Pmax * cos (d0);
wn = sqrt (pi*60/H*Ps);
z = D/2*sqrt(pi*60/(H*Ps));
wd = wn * sqrt (1-z^2);
fd = wd / (2*pi);
tau = wd/(2*pi);
th = acos (z);
Dd0 = 10*pi/180;
t = 0:0.01:3;
Dd = Dd0 / sqrt (1-z^2)* exp (-z * wn * t).* sin(wd*t);
d = (d0 + Dd) * 180/pi;
Dw = -wn*Dd0/sqrt(1-z^2)*exp(-z*wn*t).*sin(wd*t);
f = f0+Dw/(2*pi);
subplot (2,1,1);
plot(t,abs(d));
xlabel ('t(sec)');
ylabel('Dela(deg)');
subplot (2,1,2);
Document Page
plot(t,abs(f));
xlabel ('t(sec)');
ylabel('Frequency(Hz)');
%% axis([0 3 59.85 60.1]);
Figure 1
Solution 1) c)
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
b)
MATLAB Code:
clear all;
clc;
E = 1.5;
V = 1;
X1 = 1;
X2 = 0.2;
X3 = 0.3;
Pm = 0.6 ;
H = 9.94;
Pe1max = E*V/X1;
Pe2max = E*V/X2;
Pe3max = E*V/X3;
delta = 0:0.01:pi;
Pe1 = Pe1max * sin (delta);
Pe2 = Pe2max * sin (delta);
Pe3 = Pe3max * sin (delta);
d0 = asin(Pm/Pe1max);
dmax = pi - asin(Pm/Pe3max);
cosdc = (Pm*(dmax-d0)+Pe3max*cos(dmax)-Pe2max*cos(d0))/(Pe3max-Pe2max);
dc = acos(cosdc);
Pmx = [0 pi-d0]*180/pi;
Document Page
Pmy = [Pm Pm];
x0 = [d0 d0]*180/pi;
y0 = [0 Pm];
xc = [dc dc]*180/pi;
yc = [0 Pe3max*sin(dc)];
xm =[dmax dmax]*180/pi;
ym =[ 0 Pe3max*sin(dmax)];
d0 = d0*180/pi;
dmax = dmax * 180/ pi;
dc = dc*180/pi;
x = (abs(d0):0.1:abs(dc));
y = Pe2max*sin(x*pi/180);
y1 = Pe2max*sin(d0*pi/180);
y2 = Pe2max*sin(dc*pi/180);
x = [d0 x dc];
y = [Pm y Pm];
xx = abs(dc) :0.1:abs(dmax);
h = Pe3max*sin(xx*pi/180);
xx = [dc xx dmax];
hh = [ Pm h Pm];
delta = delta*180/pi;
if H ~=0
d0r = d0*pi/180;
dcr=dc*pi/180;
tc = sqrt(2*H*(dcr-d0r)/(pi*50*Pm));
Document Page
else
end
fprintf('\n Initial power angle = %7.3f\n',d0);
fprintf('Maximum angle swing = %7.3f\n',dmax);
fprintf('\n Critical clearing angle = %7.3f\n\n',dc);
fprintf('Critical clearing time = %7.3f sec. \n\n',tc);
h = figure;
figure(h);
fill(abs(x),abs(y),'m');
hold;
fill(abs(xx),abs(hh),'c');
plot (abs(delta),abs(Pe1),'k-',abs(delta),abs(Pe2),'r-',abs(delta),abs(Pe3),'g-',abs(Pmx),
abs(Pmy),'r-',abs(x0),abs(y0),abs(xc),abs(yc),abs(xm),abs(ym));
grid;
plot (abs(Pmx),abs(Pmy),'r--',abs(x0),abs(y0),abs(xc),abs(yc),abs(xm),abs(ym));
grid;
xlabel('Power angle (degree)');
ylabel('Electrical power output (pu)');
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Figure 2
Document Page
Figure 3
Initial power angle = 23.578
Maximum angle swing = 173.108
Critical clearing angle = 0.000
Critical clearing time = 0.426 sec.
Document Page
Solution 2 )
Impediments for adopting renewable energy resources in the existing grid in terms of
transient stability – It does not make the system stable.
Reason : The reason for this is the low amount of stability offered by such systems.
Ways to overcome such impediments to incorporate more renewable energy sources in the
grid :
They can be incorporated if the overall system can be stabilized by use of systems.
Solution 3 )
(1)
s = tf ('s');
G1 = 1/(2*3*s+1);
G2 = 1/(2*5*s+1);
G3 = 1/(2*6*s+1);
F = 1/(0.0625*(1+0.25*s)*(1+0.55*s));
T1 = feedback(G1,F);
T2 = feedback(G2,F);
T3 = feedback(G3,F);
step(T1,'b',T2,'r',T3,'g');
legend('Hs=3','Hs=5','Hs=6');
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Figure 4
Solution 3)
2)
s = tf ('s');
G1 = 1/(2*5*s+0.8);
G2 = 1/(2*5*s+0.9);
G3 = 1/(2*5*s+1.2);
F = 1/(0.0625*(1+0.25*s)*(1+0.55*s));
T1 = feedback(G1,F);
Document Page
T2 = feedback(G2,F);
T3 = feedback(G3,F);
step(T1,'b',T2,'r',T3,'g');
legend('D=0.8','D=0.9','D=1.2');
Figure 5
Solution 3) (3) Impact of H and D ( Rotating mass and load ) on frequency :
As the value of H increases, peak value decreases. Change in value of D does not have much
effect on response.
chevron_up_icon
1 out of 13
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]