Electromagnetics Homework: Asymptotic Evaluation of Integrals Solution

Verified

Added on  2023/06/12

|8
|1500
|205
Homework Assignment
AI Summary
This document provides detailed solutions to an electromagnetics homework assignment involving the asymptotic evaluation of integrals. The first question utilizes integration by parts to evaluate an integral. The second question employs the stationary-phase method to approximate the Bessel function Jn(x) for large x. The third question applies Laplace's method to asymptotically evaluate the modified Bessel function of the first kind, I0(Ω), for large Ω. Finally, the fourth question uses Watson's Lemma to determine the first two leading terms of the asymptotic approximation to a given integral as Ω becomes large. Each solution includes detailed steps and justifications for the methods used.
Document Page
Running head: ELECTROMAGNETICS 1
Electromagnetics
Name
Institution
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
ELECTROMAGNETICS 2
Question 1
I ( Ω ) =
0
1
ex cos ( Ωx ) dx
Let e x=u so that du=e x dx and
cos ( Ωx ) =dv so that v= cos ( Ωx ) dx= 1
Ω sin ( Ωx )
Using integration by parts,
udv=uv¿ vdu ¿
udv= e x
Ω sin ( Ωx ) ¿ ex
Ω sin ( Ωx ) dx ¿
¿ ex
Ω sin ( Ωx ) + 1
Ω e x sin ( Ωx ) dx equation 1
Apply integration by parts to solve ex sin ( Ωx ) dx by letting
e x=u so that du=e x dx
sin ( Ωx )=dv so that v= sin ( Ωx ) dx=1
Ω cos ( Ωx )
ex sin ( Ωx ) dx=e x
Ω sin (Ωx ) ex
Ω cos ( Ωx ) dx
ex sin ( Ωx ) dx=e x
Ω sin (Ωx ) 1
Ω e x cos ( Ωx ) dx
But we know that, ex cos ( Ωx ) dx =I (Ω)
Document Page
ELECTROMAGNETICS 3
ex sin ( Ωx ) dx=e x
Ω sin ( Ωx ) I ( Ω )
Ω equation 2
Substituting equation 2 into equation 1 we obtain,
I ( Ω ) = ex
Ω sin ( Ωx ) + 1
Ω ( ex
Ω sin ( Ωx ) I ( Ω )
Ω )
I ( Ω )= ex
Ω sin ( Ωx ) +ex
Ω2 sin ( Ωx ) I (Ω )
Ω2
I ( Ω )+ I ( Ω )
Ω2 = e x
Ω sin ( Ωx ) ex
Ω2 sin ( Ωx )
I ( Ω ) (1+ 1
Ω2 )= ex
Ω sin ( Ωx ) e x
Ω2 sin (Ωx )
(1+ 1
Ω2 )= ( Ω2+1
Ω2 )
I ( Ω )=
( e x
Ω sin ( Ωx ) ex
Ω2 sin ( Ωx ) )÷ ( Ω2+1
Ω2 )
¿ [ Ωex sin ( Ωx )e x cos ( Ωx )
Ω2+ 1 ]x=0
x=1
¿ {Ωex sin ( Ωx ) ex cos ( Ωx ) } {Ωex sin ( Ωx )e x cos (Ωx ) }
¿ {Ωe1 sin ( Ω )e1 cos ( Ω ) } {Ωe0 sin ( 0 )e0 cos ( 0 ) } /(Ω¿¿ 2+1)¿
¿ Ωe1 sin ( Ω ) e1 cos (Ω )+1
Ω2+1
¿ Ω sin ( Ω )cos ( Ω )+ e1
e1(Ω2+1)
Document Page
ELECTROMAGNETICS 4
I ( Ω )=Ω sin ( Ω )cos ( Ω )+e1
e1 (Ω2+1)
Question 2
Jn (x )= 1
π
0
π
cos ( xsin(θ) )
Jn (x )= 1
π {
0
π
e j ( xsin(θ) ) }
Jn (n)= 1
π {
0
π
e j ( nsin (θ) ) }
¿ 1
π {
0
π
e jn ( θsin(θ )) }
f ( θ ) =1
g ( θ )=θsin ( θ )
g ' ( θ )=1cos ( θ )
g ' ' ( θ )=sin (θ )=0
g ' ' ( θ0 ) =sin ( θ0 ) =0 , θ0=0
g' '' (θ0 ) =cos ( θ0 )=cos ( 0 )=1>0
I ( x ) f (θ ¿¿ 0)e
jx f (θ¿¿0 )+ j(π / 2 p) { p !
x |g p
( θ0 )| }
1
p × {Γ ( 1
p )
p }1 ¿
¿
f (θ¿¿ 0)=1 ¿
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
ELECTROMAGNETICS 5
g ( θ0 ) =0sin ( 0 )=0
p=3 , π
2 p = π
6 , p !=3 ( 2 ) ( 1 )=6
gp ( θ0 ) =g' '' ( θ0 ) =cos ( 0 ) =1> 0
Substituting these values into equation 1 we obtain,
Jn (n) 1 e
jx f (θ¿¿0 )+ j(π / 2 p) { p !
x |g p
(θ0 )| }1
p × {Γ ( 1
p )
p }¿
Jn (n) 1
π {e / 6 ¿¿
{ 6
n|1| }1
3 × { Γ ( 1
3 )
3 }} as n
Jn (n) 1
π 2
2
3
{6
n }1
3 Γ ( 1
3 ) as n
Jn ( n )= 1
π (2¿¿ 2
3 )(6¿¿ 1
3 )(n¿ ¿ 1
3 ) Γ ( 1
3 )¿ ¿ ¿ as n
Question 3
I ( Ω )= 1
2 π
0
2 π
eΩsinθ
The equation is the form
I ( Ω )= 1
2 π
a
b
f (x) eΩg(x) dx
g' ( x0 ) =0 , x0 ( a , b )
Document Page
ELECTROMAGNETICS 6
g ( x0 ) > g ( x )=0 , x0 ( a , b )
I ( Ω ) f ( θ0 ) eΩg ( θ0 )
2 π
Ω g' ' ( θ0 )
f ( θ ) =1 , f ( θ0 ) =1
g ( θ )=sin (θ )
g ' ( θ )=cos ( θ )
g ' ( θ0 ) =cos ( θ0 )=0 , θ0 = π
2
g' '
( θ0 )=sin ( θ0 )=sin ( π
2 )=1
I ( Ω ) = 1
2 π (1)eΩ(0 )
2 π
Ω ( 1 )
I ( Ω )= 1
2 π 2 π
Ω = 2 π
Ω (2 π )2 = 2 π
4 Ωπ2 = 1
2Ωπ as Ω
Question 4
I ( Ω )=
1
1
eΩ s2
ds
From the equation we have,
f ( s ) =cos (s ) and g ( s )=s2
g ' ( s )=2 s and s0 =0
h ( x )=f ( s ( x ) ) ds
dx ( x )
Document Page
ELECTROMAGNETICS 7
x2=g ( s0 ) g ( s ) =s2 ¿s=0 + s2 =0+ s2=s2
x2=s2
Hence, x=s
f ( s ( x ) ) =cos ( s ( x ) ) =cos ( x)
ds
dx = dx
dx =1
h ( x ) =cos ( x ) ( 1 ) =cos (x )
But we know that h ( x )
n=0,2,4
an xn
as x 0
h ( x ) =cos ( x ) =1 x2
2! + x4
4 !
which implies that,
a0=1 , a2=1
2 , a4= 1
4
Recall:
I ( Ω ) eΩ g ( s0 )
n=0,2,4
an
n+1
2
Γ ( n+1
2 )
Hence, we have:
I ( Ω ) eΩ ( 0 )
( a0
Ω Γ ( 1
2 )+ a2
Ω
3
2
Γ ( 3
2 )+
)
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
ELECTROMAGNETICS 8
I ( Ω ) ( 1
Ω Γ ( 1
2 )
1
2
Ω
3
2
Γ ( 3
2 )+ )
Γ ( 1
2 )= π , Γ ( 3
2 )=1 π
2
Hence,
I ( Ω ) = π
Ω ( 1
2
Ω
3
2 ) 1 π
2 = π
Ω π
4 Ω
3
2
Therefore, the first two leading terms are I ( Ω )= π
Ω and I ( Ω ) = π
4 Ω
3
2
chevron_up_icon
1 out of 8
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]