Fluid and Kinetics Assignment: Design Project and Analysis Report
VerifiedAdded on 2021/06/17
|11
|410
|230
Project
AI Summary
This assignment is a design project in civil engineering that analyzes fluid flow and pipe sizing. The project begins with a flow rate calculation and pipe selection based on the given parameters, including the determination of the pipe diameter using a flow rate of 30000 liters per day. It calculates the flow velocity and selects a 2-inch pipe as suitable, referencing a table of maximum allowable values. The assignment identifies the flow as turbulent and calculates the Reynolds number and friction factor. It then addresses pump selection, determining the required head and flow rate, and selects a pump based on these specifications. The project covers various aspects of fluid mechanics, including pipe sizing, flow regime identification, and pump selection, providing a comprehensive analysis for a civil engineering design scenario. The project also includes calculations for flow rate, velocity, and head loss, demonstrating an understanding of fluid dynamics principles.

Fluid And Kinetics
Assignment 01:
Fluid & Kinetics And Hydraulic Machines
Assignment 01:
Fluid & Kinetics And Hydraulic Machines
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

BTEC HND in Civil
Engineering
Acknowledgement
Engineering Geology & Soil Mechanics Page 1
Engineering
Acknowledgement
Engineering Geology & Soil Mechanics Page 1

BTEC HND in Civil
Engineering
Introduction
Engineering Geology & Soil Mechanics Page 2
Engineering
Introduction
Engineering Geology & Soil Mechanics Page 2
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

BTEC HND in Civil
Engineering
Contents
Acknowledgement...........................................................................................................................1
Introduction......................................................................................................................................2
DESIGN PROJECT: PART A.........................................................................................................4
a....................................................................................................................................................4
b...............................................................................................................................................4
c................................................................................................................................................6
d...............................................................................................................................................6
f................................................................................................................................................7
g...............................................................................................................................................7
i................................................................................................................................................8
Reference.......................................................................................................................................10
Engineering Geology & Soil Mechanics Page 3
Engineering
Contents
Acknowledgement...........................................................................................................................1
Introduction......................................................................................................................................2
DESIGN PROJECT: PART A.........................................................................................................4
a....................................................................................................................................................4
b...............................................................................................................................................4
c................................................................................................................................................6
d...............................................................................................................................................6
f................................................................................................................................................7
g...............................................................................................................................................7
i................................................................................................................................................8
Reference.......................................................................................................................................10
Engineering Geology & Soil Mechanics Page 3
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

BTEC HND in Civil
Engineering
DESIGN PROJECT: PART A
a.
Flow through the pipe
= 30000 liters per day
¿ 30000
1000 × 1
6 ×60 × 60
¿ 1.38 ×10−3 m3 s−1
b.
Flow Rate ¿ 30000
6 × 60
¿ 83.33 lpm = 22.01 gpm
Q = AV
A = Q
V
A = 1.38× 10−3
0.6
A = 2.3 ×10−3 m2
A = π r2
r2 = 2.3× 10−3 m2
π
r2 = 7.32 x 10-4 m2
r = 0.027 m
r = 27.055 mm
d = 54.11 mm = 2.13 in
d ≅ 2 in
Engineering Geology & Soil Mechanics Page 4
Engineering
DESIGN PROJECT: PART A
a.
Flow through the pipe
= 30000 liters per day
¿ 30000
1000 × 1
6 ×60 × 60
¿ 1.38 ×10−3 m3 s−1
b.
Flow Rate ¿ 30000
6 × 60
¿ 83.33 lpm = 22.01 gpm
Q = AV
A = Q
V
A = 1.38× 10−3
0.6
A = 2.3 ×10−3 m2
A = π r2
r2 = 2.3× 10−3 m2
π
r2 = 7.32 x 10-4 m2
r = 0.027 m
r = 27.055 mm
d = 54.11 mm = 2.13 in
d ≅ 2 in
Engineering Geology & Soil Mechanics Page 4

BTEC HND in Civil
Engineering
r ≅ 25 mm
A = π r2
A = π x 252
A = 1963.495 mm2
Q = AV
V = Q
A
V = 1.38× 10−3
1963.495× 10−6
V = 0.702 ms-1 = 2.303 fts-1
Table 01: Maximum Allowable Values of Different Pipe Sizes Of Steel.
Pipe Size (inch) Maximum Flow
(gal/min)
Velocity (ft/s) Head Loss
(ft/100ft)
2 45 4.3 3.9
2 1/2 75 5.0 4.1
3 130 5.6 3.9
4 260 6.6 4.0
6 800 8.9 4.0
8 1,600 10.3 3.8
10 3,000 12.2 4.0
12 4,700 13.4 4.0
14 6,000 14.2 4.0
16 8,000 14.5 3.5
18 10,000 14.3 3.0
20 12,000 13.8 2.4
24 18,000 14.4 2.1
By examining the project the design selecting a pipe is done and it can withstand to flow rate of
83.33 lmin-1 and minimum flow velocity of 0.6 ms-1. According to the above table 2 inches pipe
can withstand against these conditions. So 2 inches pipe can be chosen as a suitable pipe for this
Engineering Geology & Soil Mechanics Page 5
Engineering
r ≅ 25 mm
A = π r2
A = π x 252
A = 1963.495 mm2
Q = AV
V = Q
A
V = 1.38× 10−3
1963.495× 10−6
V = 0.702 ms-1 = 2.303 fts-1
Table 01: Maximum Allowable Values of Different Pipe Sizes Of Steel.
Pipe Size (inch) Maximum Flow
(gal/min)
Velocity (ft/s) Head Loss
(ft/100ft)
2 45 4.3 3.9
2 1/2 75 5.0 4.1
3 130 5.6 3.9
4 260 6.6 4.0
6 800 8.9 4.0
8 1,600 10.3 3.8
10 3,000 12.2 4.0
12 4,700 13.4 4.0
14 6,000 14.2 4.0
16 8,000 14.5 3.5
18 10,000 14.3 3.0
20 12,000 13.8 2.4
24 18,000 14.4 2.1
By examining the project the design selecting a pipe is done and it can withstand to flow rate of
83.33 lmin-1 and minimum flow velocity of 0.6 ms-1. According to the above table 2 inches pipe
can withstand against these conditions. So 2 inches pipe can be chosen as a suitable pipe for this
Engineering Geology & Soil Mechanics Page 5
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

BTEC HND in Civil
Engineering
design. There is no point to choose 2.5 inches pipes or bigger one because 2 inches pipe is much
more sufficient enough to achieve this conditions.
c.
Reynolds number=ℜ= ρVD
μ
¿ 1000× 0.702× 50× 1 0−3
1× 10−3
¿ 3.5 ×104
This is a turbulent flow (Reynolds number > 3000)
Relative roughness= ε
D =0.015
50 =3× 10−4 =0.0003
Figure 1. Re number
Engineering Geology & Soil Mechanics Page 6
Engineering
design. There is no point to choose 2.5 inches pipes or bigger one because 2 inches pipe is much
more sufficient enough to achieve this conditions.
c.
Reynolds number=ℜ= ρVD
μ
¿ 1000× 0.702× 50× 1 0−3
1× 10−3
¿ 3.5 ×104
This is a turbulent flow (Reynolds number > 3000)
Relative roughness= ε
D =0.015
50 =3× 10−4 =0.0003
Figure 1. Re number
Engineering Geology & Soil Mechanics Page 6
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

BTEC HND in Civil
Engineering
Friction factor = 0.023
Major head loss=f ( lV 2
2 Dg )= 0.023 ×148 ×0.7022
2 ×0.05 × 9.81 =1.709 J
d.
Minor head loss= K L V 2
2 g = 0.7022
2 × 9.81 ( 0.2+1+0.2+0.2 )=0.040 J
e.
The liquid is non-viscous and incompressible and the flow is streamlined.
H P=Pump energy
P0 +h1 ρg+ 1
2 ρ V 1
2 + H P=P0 + h2 ρg+ 1
2 ρ V 2
2+ HL−major + H L−minor
f.
Assuming tank level as level of zero potential
V 1=V 2 =0.702
h2 =18
P0 +h1 ρg+ 1
2 ρ V 1
2 + H P=P0 + h2 ρg+ 1
2 ρ V 2
2+ HL−major + H L−minor
H P= ( 18 ×1000 ×9.81 ) +1.709+0.04
H P=1.76 ×105 J
Engineering Geology & Soil Mechanics Page 7
Engineering
Friction factor = 0.023
Major head loss=f ( lV 2
2 Dg )= 0.023 ×148 ×0.7022
2 ×0.05 × 9.81 =1.709 J
d.
Minor head loss= K L V 2
2 g = 0.7022
2 × 9.81 ( 0.2+1+0.2+0.2 )=0.040 J
e.
The liquid is non-viscous and incompressible and the flow is streamlined.
H P=Pump energy
P0 +h1 ρg+ 1
2 ρ V 1
2 + H P=P0 + h2 ρg+ 1
2 ρ V 2
2+ HL−major + H L−minor
f.
Assuming tank level as level of zero potential
V 1=V 2 =0.702
h2 =18
P0 +h1 ρg+ 1
2 ρ V 1
2 + H P=P0 + h2 ρg+ 1
2 ρ V 2
2+ HL−major + H L−minor
H P= ( 18 ×1000 ×9.81 ) +1.709+0.04
H P=1.76 ×105 J
Engineering Geology & Soil Mechanics Page 7

BTEC HND in Civil
Engineering
g.
The value we need from the head of the pump is 59 ft. and the required flow rate is 83litres/min.
According to the given table the exact value which reaches this value is the second pump as
given in the table.
i.
Parameters
P ressure drop(Δ p) , pipe length(l) , pipe diameter ( D), fluid velocity(V ),
fluid density ( ρ ) , fluid viscosity ( μ ) , pipe surface roughness( ε)
n=7
Dimensions
M , L , T
k =3
n−k =7−3=4
Pi terms
D , V , ρ
π1=∆ P Da 1 V b 1 ρc 1=0
π2=l Da 2 V b 2 ρc 2=1
π3=μ Da 3 V b 3 ρc3=2
π4 =ϵ Da 4 V b 4 ρc 4=3
0=(M L−1 T−2 )× La 1 × Lb 1 T−b 1 × M c 1 L−3 c1
Engineering Geology & Soil Mechanics Page 8
Engineering
g.
The value we need from the head of the pump is 59 ft. and the required flow rate is 83litres/min.
According to the given table the exact value which reaches this value is the second pump as
given in the table.
i.
Parameters
P ressure drop(Δ p) , pipe length(l) , pipe diameter ( D), fluid velocity(V ),
fluid density ( ρ ) , fluid viscosity ( μ ) , pipe surface roughness( ε)
n=7
Dimensions
M , L , T
k =3
n−k =7−3=4
Pi terms
D , V , ρ
π1=∆ P Da 1 V b 1 ρc 1=0
π2=l Da 2 V b 2 ρc 2=1
π3=μ Da 3 V b 3 ρc3=2
π4 =ϵ Da 4 V b 4 ρc 4=3
0=(M L−1 T−2 )× La 1 × Lb 1 T−b 1 × M c 1 L−3 c1
Engineering Geology & Soil Mechanics Page 8
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

BTEC HND in Civil
Engineering
M :1+ c 1=0 ,c 1=−1
T :−2−b 1=0 , b 1=−2
L :−1+ a1+ b1−3 c 1=−1+ a 1−2+3=0 , a 1=0
C= ∆ P
ρV 2
0= ( L ) × La 2 × Lb 2 T−b 2 × M c2 L−3 c2
M : c 2=0 ,
T :−b 2=0 ,
L :1+ a 2−b 2−3 c 2=1+ a 2=0 , a 2=−1
C= l
D
0= ( M L−1 T−1 ) × La 3 × Lb 3 T−b 3 × Mc 3 L−3 c 3
M :1+ c 3=0 , c 3=−1
T :−1−b 3=0 , b 3=−1
L :−1+ a3+ b 3−3 c 3=−1+ a 1−1+3=0 , a3=−1
C= μ
ρDV = 1
ℜ
0=(L)× La 4 × Lb 4 T−b 4 × Mc 4 L−3 c 4
M : c 4=0 ,
T :b 4=0 ,
L :1+ a 4+ b 4−3 c 4=1+a 4=0 , a 4=−1
C= ϵ
D
Δ p
ρV 2 =function( l
D , ε
D , ℜ)
Engineering Geology & Soil Mechanics Page 9
Engineering
M :1+ c 1=0 ,c 1=−1
T :−2−b 1=0 , b 1=−2
L :−1+ a1+ b1−3 c 1=−1+ a 1−2+3=0 , a 1=0
C= ∆ P
ρV 2
0= ( L ) × La 2 × Lb 2 T−b 2 × M c2 L−3 c2
M : c 2=0 ,
T :−b 2=0 ,
L :1+ a 2−b 2−3 c 2=1+ a 2=0 , a 2=−1
C= l
D
0= ( M L−1 T−1 ) × La 3 × Lb 3 T−b 3 × Mc 3 L−3 c 3
M :1+ c 3=0 , c 3=−1
T :−1−b 3=0 , b 3=−1
L :−1+ a3+ b 3−3 c 3=−1+ a 1−1+3=0 , a3=−1
C= μ
ρDV = 1
ℜ
0=(L)× La 4 × Lb 4 T−b 4 × Mc 4 L−3 c 4
M : c 4=0 ,
T :b 4=0 ,
L :1+ a 4+ b 4−3 c 4=1+a 4=0 , a 4=−1
C= ϵ
D
Δ p
ρV 2 =function( l
D , ε
D , ℜ)
Engineering Geology & Soil Mechanics Page 9
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

BTEC HND in Civil
Engineering
Reference
[1]
Engineering Geology & Soil Mechanics Page 10
Engineering
Reference
[1]
Engineering Geology & Soil Mechanics Page 10
1 out of 11

Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
Copyright © 2020–2025 A2Z Services. All Rights Reserved. Developed and managed by ZUCOL.