UCD STAT20100: Inferential Statistics Assignment 2, Semester 2, 2020

Verified

Added on  2022/09/14

|5
|903
|11
Homework Assignment
AI Summary
Read More
tabler-icon-diamond-filled.svg

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
1
INFERENTIAL STATISTICS
Name of the Student
Name of the University
Author’s Note.
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
2
Q. Consider a random sample X1, X2, …, Xn from a Gaussian Population with mean 0 and
unknown variance 𝜎 > 0. The parameter of interest is 𝜏 = 1
2𝜎2. To simplify the notation, you can
use 𝑋̿= βˆ‘ 𝑋𝑖
21
𝑛
𝑛
𝑖=1 .
Solution.
From the above question, then making 𝜎 the subject give;
𝜎2 = 1
2𝜏
The pdf of the Gaussian distribution will be given as;
𝑓(π‘₯, 𝜎) = 1
√2πœ‹πœŽ2 βˆ— exp {βˆ’1
2𝜎2 ( 𝑋𝑖 βˆ’ 0)2} 1
Changing the parameterization yields;
𝑓(π‘₯, 𝜏) = √𝜏
βˆšπœ‹ exp{βˆ’πœ(𝑋𝑖)2}
a) The Moments Estimator of 𝜏 is given by;
πœ‡2
β€² = 𝑀2
β€² 2
By MGF technique the second moment for the gaussian distribution will be given by;
𝑀π‘₯(𝑑) = exp (πœ‡π‘‘ +
𝜎2𝑑2
2 ) 3
Which on substitution and finding the second derivative yields the second-row population
moments as;
πœ‡2
β€² = 𝜎2 = 1
2𝜏
So that πœΜ‚= 1
2𝜎2 which should be equated to the sample raw moments XΜΏ = βˆ‘ Xi
21
n
n
i=1 .
Since 𝜎2Μ‚ = XΜΏ
Then πœΜ‚= 1
2XΜΏ is the MoM estimator.
1 Takeyuki Hida, β€˜5. Gaussian Processes’, Stationary Stochastic Processes. (MN-8) (2015).
2 Courtney Taylor, β€˜Moment Generating Function for Binomial Distribution’ (2020)
<https://www.thoughtco.com/moment-generating-function-binomial-distribution-3126454> accessed 8
April 2020.
3 ibid.
Document Page
3
b) The likelihood function of 𝜏 is given by
𝐿(𝜏) = ∏ 𝑓(π‘₯𝑖, 𝜏)
𝑛
𝑖=1
4
Which on substitution yields
= (𝜏)𝑛
2 + (πœ‹)βˆ’π‘›
2 + exp {βˆ’πœ βˆ‘ π‘₯𝑖
2
𝑛
𝑖=1
} 5∎
The log likelihood function is given by
ln 𝐿(𝜏)
Or simply on substitution yields
= 𝑛
2 ln(𝜏) βˆ’ 𝑛
2 ln(πœ‹) βˆ’ 𝜏 βˆ‘ π‘₯𝑖
2
𝑛
𝑖=1 ∎
6
c) To find if the statistic T is sufficient 𝜏, then by factorization theorem 7 the MLE should be
a function of T.
I.e. 𝑔(𝑇, 𝜏)β„Ž(π‘₯)and should only depend on 𝜏.
From the previous equation 5 on the likelihood function, the factorized form can be written as;
( 𝜏
πœ‹
)
𝑛
2 exp{βˆ’πœ βˆ‘ π‘₯𝑖
2
𝑛
𝑖=1
} βˆ— 1
So that 𝑔(𝑇, 𝜏) = (
𝜏
πœ‹)
𝑛
2 exp{βˆ’πœβˆ‘ π‘₯𝑖
2𝑛
𝑖=1 }
And β„Ž(π‘₯) = 1
From 𝑔(𝑇, 𝜏) we only have one minimal sufficient statistic 𝜏 =βˆ‘ π‘₯𝑖
2𝑛
𝑖=1
To test whether it is unbiased, then
𝜏
𝑛 = XΜΏ
So that 𝜏 = 𝑛XΜΏis a sufficient statistic.
d) The maximum likelihood estimator will be given by minimizing the log likelihood
4 Mike Allen, β€˜Maximum Likelihood Estimation’, The SAGE Encyclopedia of Communication Research
Methods (2017).
5 ibid.
6 ibid.
7 John A Rice, Mathematical Statistics and Data Analysis (Cengage Learning/Brooks/Cole 2013).
Document Page
4
function 8.
πœ•π‘™(𝜏)
πœ•πœ = 𝑛
2𝜏 βˆ’ βˆ‘ π‘₯𝑖
2𝑛
𝑖=1 equating to 0 and a bit of algebra gives;
𝑛
2𝜏 = βˆ‘ π‘₯𝑖
2𝑛
𝑖=1 or dividing both side of the equation by 2
𝑛 and taking reciprocal yields;
1
𝜏 = 2βˆ‘ π‘₯𝑖
2𝑛
𝑖=1
𝑛 π‘œπ‘Ÿ πœΜ‚= 1
2XΜΏ
β„Žπ‘’π‘›π‘π‘’ π‘π‘Ÿπ‘œπ‘£π‘’π‘‘βˆŽ
e) The 95% 𝐢. 𝐼is given by the formula9
Pr{πœ’π‘›βˆ’1
2 (1 βˆ’π›Ό
2) ≀ π‘›πœΜ‚
𝜎2 ≀ πœ’π‘›βˆ’1
2 (𝛼
2)} 10 where 𝜎2 = 1
2𝜏
Or
( π‘›πœΜ‚
πœ’π‘›βˆ’1
2 (𝛼
2) , π‘›πœΜ‚
πœ’π‘›βˆ’1
2 (1βˆ’π›Ό
2)) 11
From the excel output below, πœΜ‚= 3.5461, 𝑛 = 6, πœ’π‘›βˆ’1
2 (𝛼
2) = 12.8325and πœ’π‘›βˆ’1
2 (1 βˆ’π›Ό
2) =
0.8312.
On substituting yields
( 6(3.5461)
12.8325,6(3.5461)
0.8312 )
And thus, the value of πœΜ‚ lies between 1.6580 and 25.5971.
8 ibid.
9 ibid.
10 ibid.
11 ibid.
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
5
x_i x_i^2 Column1 labels Chisquare Values
-0.36 0.1296 1-alpha/2 0.8312
0.25 0.0625 alpha/2 12.8325
0.57 0.3249 confidence levels
-0.4 0.16
-0.13 0.0169 lower 1.658
0.39 0.1521 upper 25.5974
0.846
0.141
3.5461
Works Cited.
Allen M, β€˜Maximum Likelihood Estimation’, The SAGE Encyclopedia of Communication
Research Methods (2017)
Hida T, β€˜5. Gaussian Processes’, Stationary Stochastic Processes. (MN-8) (2015)
Rice JA, Mathematical Statistics and Data Analysis (Cengage Learning/Brooks/Cole 2013)
Taylor C, β€˜Moment Generating Function for Binomial Distribution’ (2020)
<https://www.thoughtco.com/moment-generating-function-gaussian-distribution-3126454>
accessed 8 April 2020
chevron_up_icon
1 out of 5
circle_padding
hide_on_mobile
zoom_out_icon
logo.png

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]