SIT292 Linear Algebra Assignment 2 Solution: 2017, Deakin University

Verified

Added on  2019/11/25

|42
|948
|669
Homework Assignment
AI Summary
This document provides a detailed solution to SIT292 Linear Algebra Assignment 2 from 2017, covering key concepts such as matrix cofactors, orthogonal vectors, and the Gaussian elimination method. The solution includes step-by-step calculations and explanations for determining eigenvalues and eigenvectors for various matrices, along with verification steps. The assignment addresses concepts like matrix diagonalization and the conditions required for it. The solution also provides insights into matrix operations, systems of equations, and their consistency. This document is a valuable resource for students studying linear algebra, offering a comprehensive guide to solving complex problems and understanding the underlying principles.
tabler-icon-diamond-filled.svg

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
SIT292 LINEAR ALGEBRA 2017
ASSIGNMENT 2
STUDENT ID
[Pick the date]
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Question 1
(i) Given matrix
A=
[ 3 2 1
1 1 2
1 2 0 ]
Cofactors Ci jof the matrix
Ci j=¿
C11=¿
C12 =¿
C13 =¿
C21 =¿
C22 =¿
C23 =¿
C31 =¿
C32 =¿
C33 =¿
Hence, cofactors of the matrix A would be given below:
1
Document Page
Cofactors A= [ 4 2 1
2 1 4
3 5 1 ]
Adj Aof the matrix A would be given below:
Adj A= [ 4 2 3
2 1 5
1 4 1 ]
(ii) Verification that computed adj Ais correct.
If A( adj A )
det A =I
Now,
LHS
A( adj A )= [ 3 2 1
1 1 2
1 2 0 ]. [ 4 2 3
2 1 5
1 4 1 ]
¿ [ 3.4+2. (2)+1.(1) 3.(2)+2.1+1.4 3.3+ 2.(5)+ 1.1
1.4+1.(2)+2.(1) 1.(2)+1.1+2.4 1.3+ 1.(5)+ 2.1
1.4 +(2) .(2)+0.(1) ( 1 ) . ( 2 ) +(2).1+ 0.4 (1).3+(2). (5)+ 0.1 ]
¿ [ 7 0 0
0 7 0
0 0 7 ]
And
A=
[ 3 2 1
1 1 2
1 2 0 ] 2
Document Page
det A=
| 3 2 1
1 1 2
1 2 0|
¿ 3 ( 0+ 4 ) 2 ( 0+ 2 )+ 1 (2+1 )
¿ 1241
¿ 7
A( adj A )
det A =
[ 7 0 0
0 7 0
0 0 7 ]7 = [ 1 0 0
0 1 0
0 0 1 ]
RHS
I =
[1 0 0
0 1 0
0 0 1 ]
LHS = RHS
It is apparent that both the sides are equal and therefore, the computed adj A is correct.
3
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Question 2
Two vectors would be orthogonal when there dot product becomes zero.
¿ 7 + . +3 . (3 ) +1.1+ (4 ) .4
¿ 7 + 2 9 +116
¿ 22 15
Hence,
22 15=0
( 5 ) ( +3 )=0
4
Document Page
=5 ,3
Therefore, the for =5 ,3the vectors would be orthogonal .
Question 3
Given equations
Gaussian elimination method to reduce the following system of equations into row echelon form
is applied below:
5
Document Page
The row echelon form of the given system is given below:
This system does not have any solution because 0 5 .
It is apparent from the above that the given system has three linear equations and 4 variables.
Hence, the system is said to be inconsistent and does not have any solution as evident from the
above.
6
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Question 4
Eigen values and eigenvectors of the given matrixes are as highlighted below:
For matrix A
Eigen values
A=
[1 0 1
0 1 0
1 0 1 ]
Let λ is the eigenvalues of the given matrix in such a way that
det ( A¿ λI )=0 ¿
Now,
AλI = [1 0 1
0 1 0
1 0 1 ]λ [1 0 0
0 1 0
0 0 1 ]
AλI = [ 1 0 1
0 1 0
1 0 1 ]
[|
λ 0 0
0 λ 0
0 0 λ|]
AλI = [ 1λ 0 1
0 1λ 0
1 0 1λ ]
7
Document Page
Determinant of AλI
|AλI |=
|1λ 0 1
0 1λ 0
1 0 1 λ|
¿ ( 1 λ ) { 0 ( 1λ ) ( 1λ ) }0 { 00 }+1 { 0 ( 1λ ) }
¿ ( 1 λ ) ¿
¿ ( 1 λ ) ¿
¿ ( 1 λ ) { ( λ1 )21 }
¿ ( 1 λ ) { λ22 λ+ 11 }
¿ ( 1 λ ) ( λ22 λ )
det ( A¿ λI )= λ ( 1λ ) ( λ2 ) ¿
Now,
det ( A¿ λI )=0 ¿
λ ( 1 λ ) ( λ2 ) =0
λ=0 ,
1 λ=0
λ=1 ,
λ2=0
λ=2
8
Document Page
Therefore, the eigenvalues of matrix A is 0,1,2.
Eigenvectors
Let the eigenvector is ϑ, such that ( Aλ I ) ϑ =0 for each of the corresponding eigenvalue.
Now,
For eigenvalue λ=0 ,
( A0 I ) ϑ =0
( [1 0 1
0 1 0
1 0 1 ]0 [1 0 0
0 1 0
0 0 1 ] ) [ x
y
z ]= [0
0
0 ]
[1 0 1
0 1 0
0 0 0 ][ x
y
z ]= [0
0
0 ]
x + z=0
y=0
Now, x=z
y=0
z=z
Eigenvector
[ x
y
z ]= [z
0
z ] 9
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Let z=1hence ,
Eigenvector for λ=0 is [1
0
1 ]
For eigenvalue λ=1 ,
( A1 I ) ϑ=0
( [1 0 1
0 1 0
1 0 1 ]1 [1 0 0
0 1 0
0 0 1 ]) [ x
y
z ]= [0
0
0 ]
[0 0 1
0 0 0
1 0 0 ][ x
y
z ]= [0
0
0 ]
Now reduce the matrix into row echelon form as
[a . b
0 .
0 0 c ]
[0 0 1
0 0 0
1 0 0 ]: [1 0 0
0 0 0
0 0 1 ]
Further,
Reduce the matrix to reduced row echelon form
[1 0 b
0 0 0
0 0 1 ] 10
Document Page
[1 0 0
0 0 0
0 0 1 ]: [1 0 0
0 0 1
0 0 0 ]
Hence,
[1 0 0
0 0 1
0 0 0 ][ x
y
z ]= [0
0
0 ]
x=0
z=0
Eigenvector
[ x
y
z ]= [ 0
y
0 ]= [0
0
0 ]
Let y=1hence ,
Eigenvector for λ=1 , is [ 0
1
0 ]
Eigenvector for λ=2
( A2 I ) ϑ=0
( [1 0 1
0 1 0
1 0 1 ]2 [1 0 0
0 1 0
0 0 1 ] ) [ x
y
z ]= [0
0
0 ]
11
Document Page
[1 0 1
0 1 0
1 0 1 ][ x
y
z ]= [0
0
0 ]
Reduce the above matrix as
[a b
0 ..
0 0 c ]
[1 0 1
0 1 0
0 0 0 ]
Now reduce the matrix into reduced row echelon form as
[1 b
0 ..
0 0 1 ]
[1 0 1
0 1 0
0 0 0 ]
[1 0 1
0 1 0
0 0 0 ][ x
y
z ]= [0
0
0 ]
xz=0
y=0
Now, x=z
y=0
12
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
z=z
Eigenvector
[ x
y
z ]= [ z
0
z ]
Let z=1hence ,
Eigenvector for λ=2 is [ 1
0
1 ]
Therefore, the eigenvectors of matrix A is [1
0
1 ], [0
1
0 ], [1
0
1 ]
For matrix B
Eigen values
B= [3 2 1
3 2 1
3 2 1 ]
Let λ is the eigenvalues of the given matrix in such a way that
det (B¿ λI)=0 ¿
Now,
BλI = [ 3 2 1
3 2 1
3 2 1 ] λ [ 1 0 0
0 1 0
0 0 1 ]
13
Document Page
BλI = [ 3 2 1
3 2 1
3 2 1 ]
[|
λ 0 0
0 λ 0
0 0 λ|]
BλI = [ 3 λ 2 1
3 2λ 1
3 2 1λ ]
Determinant of BλI
|B λI|=
|3λ 2 1
3 2λ 1
3 2 1λ |
¿ ( 3λ ) ( λ2 3 λ ) 2 (3 λ ) +1.(3 λ)
¿ ( λ6 ) λ2
det (B¿ λI)= ( λ6 ) λ2 ¿
Now,
det (B¿ λI)=0 ¿
( λ6 ) λ2=0
( λ6 ) λ2=0 ,
λ=0 ,
λ6=0
λ=6
Therefore, the eigenvalues of matrix B is 0 , 6 .
14
Document Page
Eigenvectors
Let the eigenvector is ϑ, such that ( Bλ I ) ϑ=0 for each of the corresponding eigenvalue.
Now,
For eigenvalue λ=0 ,
( B0 I ) ϑ=0
( [3 2 1
3 2 1
3 2 1 ]0 [1 0 0
0 1 0
0 0 1 ] ) [ x
y
z ]= [0
0
0 ]
[3 2 1
3 2 1
3 2 1 ][ x
y
z ]= [0
0
0 ]
Now reduce the matrix into row echelon form as
[a . b
0 .
0 0 c ]
[3 2 1
3 2 1
3 2 1 ]: [3 2 1
0 0 0
0 0 0 ]
Now reduce the matrix into reduced row echelon form as
[1 0 b
0 0 0
0 0 1 ]
[ 3 2 1
0 0 0
0 0 0 ] :
[ 1 2
3
1
3
0 0 0
0 0 0 ] 15
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Hence,
[ 1 2
3
1
3
0 0 0
0 0 0 ] [ x
y
z ]= [ 0
0
0 ]
x +( 2
3 ) y +( 1
3 ) z=0
x= ( 2
3 ) y( 1
3 ) z
Now,
Eigenvector
[ ( 2
3 ) y ( 1
3 ) z
y
z ]=
[ ( 2
3 ) y
y
0 ] +
[ ( 1
3 ) z
0
z ] where , yz 0
Let yz =1
[( 2
3 )
1
0 ] ,
[ ( 1
3 )
0
1 ]
Eigenvector for λ=0 is
[ ( 2
3 )
1
0 ] ,
[ ( 1
3 )
0
1 ]
For eigenvalue λ=6 ,
( B0 I ) ϑ=0
16
Document Page
( [3 2 1
3 2 1
3 2 1 ]6 [1 0 0
0 1 0
0 0 1 ] ) [ x
y
z ]=
[0
0
0 ]
[ 3 2 1
3 4 1
3 2 5 ][ x
y
z ] = [ 0
0
0 ]
Now reduce the matrix into row echelon form as
[a . b
0 .
0 0 c ]
[3 2 1
3 4 1
3 2 5 ]: [3 2 1
0 4 4
0 0 0 ]
Now reduce the matrix into reduced row echelon form as
[1 0 b
0 0 0
0 0 1 ]
[ 3 2 1
0 4 4
0 0 0 ] : [ 1 0 1
0 1 1
0 0 0 ]
Hence,
[1 0 1
0 1 1
0 0 0 ][ x
y
z ]= [0
0
0 ]
xz=0
yz =0
17
Document Page
Now,
x=z
y=z
[ x
y
z ]= [ z
z
z ]
z 0hence let z=1
[ z
z
z ]= [1
1
1 ]
Eigenvector for λ=6 is [1
1
1 ]
Question 5
(a) Eigen values and eigenvectors of the given matrixes
Given
A=
[1 1 4
0 1 1
0 0 2 ]
Let λ is the eigenvalues of the given matrix in such a way that
det ( A¿ λI )=0 ¿
Now,
18
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
AλI = [1 1 4
0 1 1
0 0 2 ]λ [1 0 0
0 1 0
0 0 1 ]
AλI = [ 1 1 4
0 1 1
0 0 2 ] [ λ 0 0
0 λ 0
0 0 λ ]
AλI = [1λ 1 4
0 1λ 1
0 0 2λ ]
Determinant of AλI
| AλI |=
|
1λ 1 4
0 1λ 1
0 0 2λ|
¿ ( 1 λ ) (λ2λ2)1 {00 }+ 4 { 00 }
¿ ( 1 λ ) (λ2)(λ+1)
det ( A¿ λI )= ( 1λ ) ( λ2)( λ +1)¿
Now,
det ( A¿ λI )=0 ¿
( 1 λ ) ( λ2 ) ( λ+1 ) =0
1 λ=0 ,
λ=1 ,
λ2=0
19
Document Page
λ=2 ,
λ+1=0
λ=1
Therefore, the eigenvalues of matrix A is 1 ,2 ,1.
Eigenvectors
Let the eigenvector is ϑ, such that ( Aλ I ) ϑ =0 for each of the corresponding eigenvalue.
Now,
For eigenvalue λ=1 ,
( A1 I ) ϑ=0
( [1 1 4
0 1 1
0 0 2 ]1 [1 0 0
0 1 0
0 0 1 ] ) [ x
y
z ]= [0
0
0 ]
[ 0 1 4
0 2 1
0 0 1 ][ x
y
z ] =
[ 0
0
0 ]
Now reduce the matrix into row echelon form as
[1 . b
0 .
0 0 1 ]
20
Document Page
[ 0 1 4
0 2 1
0 0 1 ] : [ 0 1 0
0 0 0
0 0 1 ]
Hence,
[0 1 0
0 0 0
0 0 1 ][ x
y
z ]= [0
0
0 ]
y=0
z=0
Now,
[ x
y
z ]= [ x
0
0 ]
Let x=1hence ,
Eigenvector for λ=0 is [1
0
0 ]
For eigenvalue λ=2 ,
( A2 I ) ϑ=0
( [1 1 4
0 1 1
0 0 2 ]2 [1 0 0
0 1 0
0 0 1 ] ) [ x
y
z ]=
[0
0
0 ]
21
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
[1 1 4
0 3 1
0 0 0 ][ x
y
z ]=
[0
0
0 ]
Now reduce the matrix into row echelon form as
[1 . b
0 .
0 0 1 ]
[1 1 4
0 3 1
0 0 0 ]: [1 1 4
0 3 1
0 0 0 ]
Now reduce the matrix into reduced row echelon form as
R 2 (1
3 ) R 2
[ 1 1 4
0 1 1
3
0 0 0 ]
R 1 R 1 ( 1. R 2 )
[ 1 0 13
3
0 1 1
3
0 0 0 ]
R 1R1
[1 0 13
3
0 1 1
3
0 0 0 ] 22
Document Page
Hence,
[1 0 13
3
0 1 1
3
0 0 0 ].
[ x
y
z ]= [0
0
0 ]
x (13
3 )z =0
y ( 1
3 ) z=0
And,
x= (13
3 )z y=( 1
3 )z
Now,
[ x
y
z ]=
[ ( 13
3 ) z
( 1
3 ) z
z ]
Let z=1hence ,
Eigenvector for λ=2 is
[ ( 13
3 )
( 1
3 )
1 ]
23
Document Page
For eigenvalue λ=1 ,
( A(1)I ) ϑ =0
( [1 1 4
0 1 1
0 0 2 ](1) [1 0 0
0 1 0
0 0 1 ] ) [ x
y
z ]=
[0
0
0 ]
[2 1 4
0 0 1
0 0 3 ][ x
y
z ]= [0
0
0 ]
Now reduce the matrix into row echelon form as
[1 . b
0 .
0 0 1 ]
[ 2 1 4
0 0 1
0 0 3 ] :
[ 1 1
2 0
0 0 1
0 0 0 ]
Hence,
[1 1
2 0
0 0 1
0 0 0 ] [ x
y
z ]= [0
0
0 ]
x +( 1
2 ) y=0
z=0
Now,
24
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
x= ( 1
2 ) y z=0
[ x
y
z ]=
[( 1
2 ) y
y
0 ]
Let y=1hence ,
Eigenvector for λ=1 is
[ ( 1
2 )
1
0 ]
For matrix B
B= [2 2 1
0 1 3
0 0 1 ]
Let λ is the eigenvalues of the given matrix in such a way that
det (B¿ λI)=0 ¿
Now,
BλI = [2 2 1
0 1 3
0 0 1 ]λ [1 0 0
0 1 0
0 0 1 ]
BλI = [2 2 1
0 1 3
0 0 1 ] [λ 0 0
0 λ 0
0 0 λ ] 25
Document Page
BλI = [2λ 2 1
0 1 λ 3
0 0 1λ ]
Determinant of BλI
|B λI|=
|2λ 2 1
0 1λ 3
0 0 1λ |
¿ ( 2 λ ) (λ21)2 { 0 } +1 { 00 }
¿ ( 2 λ ) (λ21)
det ( B¿ λI )= ( 2λ ) (λ21)¿
Now,
det (B¿ λI)=0 ¿
( 2 λ ) (λ21)=0
( 2 λ ) ( λ1 ) ( λ+1 ) =0 ,
λ=1 ,1 , 2
Therefore, the eigenvalues of matrix A is 1 ,1 , 2.
Eigenvectors
Let the eigenvector is ϑ, such that ( Aλ I ) ϑ =0 for each of the corresponding eigenvalue.
Now,
For eigenvalue λ=1 ,
26
Document Page
( B1 I ) ϑ =0
( [ 2 2 1
0 1 3
0 0 1 ] 1 [ 1 0 0
0 1 0
0 0 1 ] ) [ x
y
z ] =
[ 0
0
0 ]
[ 1 2 1
0 0 3
0 0 2 ][ x
y
z ] = [ 0
0
0 ]
Now reduce the matrix into row echelon form as
[1 . b
0 .
0 0 1 ]
[ 1 2 1
0 0 3
0 0 2 ] : [ 1 2 0
0 0 1
0 0 0 ]
Hence,
[1 2 0
0 0 1
0 0 0 ][ x
y
z ]= [0
0
0 ]
x +2 y =0 and x=2 y
z=0
Now,
[ x
y
z ]= [2 y
y
z ]
Let y=1hence ,
27
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Eigenvector for λ=0 is [2
1
0 ]
For eigenvalue λ=1
( B(1) I ) ϑ=0
( [2 2 1
0 1 3
0 0 1 ](1) [1 0 0
0 1 0
0 0 1 ]) [ x
y
z ]= [0
0
0 ]
[3 2 1
0 2 3
0 0 0 ][ x
y
z ]= [0
0
0 ]
Now reduce the matrix into row echelon form as
[1 . b
0 .
0 0 1 ]
[3 2 1
0 2 3
0 0 0 ]:
[1 0 2
3
0 1 3
2
0 0 0 ]
Hence,
[ 1 0 2
3
0 1 3
2
0 0 0 ] [ x
y
z ]= [ 0
0
0 ]
28
Document Page
x 2
3 z=0x= 2
3 z
y +( 3
2 )z=0 y =(3
2 ) z
Now,
[ x
y
z ]=
[ 2
3 z
( 3
2 ) z
z ]
Let z=1hence ,
Eigenvector for λ=1 is
[ 2
3
( 3
2 )
1 ]
For eigenvalue λ=2
( B(2)I ) ϑ=0
( [ 2 2 1
0 1 3
0 0 1 ] (2) [ 1 0 0
0 1 0
0 0 1 ]) [ x
y
z ] = [ 0
0
0 ]
[ 0 2 1
0 1 3
0 0 3 ][ x
y
z ] = [ 0
0
0 ]
Now reduce the matrix into row echelon form as
29
Document Page
[1 . b
0 .
0 0 1 ]
[ 0 2 1
0 1 3
0 0 3 ] : [ 0 1 0
0 0 0
0 0 1 ]
Hence,
[0 1 0
0 0 0
0 0 1 ][ x
y
z ]= [0
0
0 ]
y=0
z=0
Now,
[ x
y
z ]= [ x
0
0 ]
Let x=1hence ,
Eigenvector for λ=2 is [ 1
0
0 ]
(b) Condition P1 AP=B
Given matrix
A = [1 1 4
0 1 1
0 0 2 ] 30
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
B= [2 2 1
0 1 3
0 0 1 ]
In this case, the above condition would be fulfilled only when P would be and invertible matrix
and matrix B would be a diagonal matrix.
However, it is apparent from the above that matrix B is not a diagonal matrix and hence, matrix
P would not be determined for the condition P1 AP=B .
Question 6
Given matrix
31
Document Page
A = [3 2 1
3 8 3
3 6 1 ]
(a) Eigenvalues of the given matrix
Let λ is the eigenvalues of the given matrix in such a way that
det ( A¿ λI )=0 ¿
Now,
AλI = [3 2 1
3 8 3
3 6 1 ] λ [1 0 0
0 1 0
0 0 1 ]
AλI = [3 2 1
3 8 3
3 6 1 ] [ λ 0 0
0 λ 0
0 0 λ ]
AλI = [3λ 2 1
3 8 λ 3
3 6 1λ ]
Determinant of AλI
| AλI |=
|
3λ 2 1
3 8λ 3
3 6 1λ |
¿ ( 3λ ) ( λ2 7 λ+10 ) 2 ( 63 λ )1 .3 ( λ2 )
¿ ( 3λ ) ( λ2 ) ( λ5 )12+6 λ3 λ+6
¿ ( 3λ ) ( λ2 ) ( λ5 )+3 λ6
¿ ( 3λ ) ( λ2 ) ( λ5 )+3 ( λ2 )
32
Document Page
¿ ( λ2 ) { ( 3 λ ) ( λ5 ) + 3 }
¿ ( λ2 ) { 3 λ15λ2+5 λ+ 3 }
¿ ( λ2 ) {λ2 +8 λ12 }
¿ ( λ2 ) { λ28 λ +12 }
¿ ( λ2 ) ( λ6 ) ( λ2 )
det ( A¿ λI )= ( λ2 ) ( λ6 ) ( λ2 ) ¿
Now,
det ( A¿ λI )=0 ¿
( λ2 ) ( λ6 ) ( λ2 ) =0
λ=2 ,2 , 6
Therefore, the eigenvalues of matrix A is 2 , 2, 6 .
(b) Eigenvectors for each of the eigenvalue
Eigenvectors
Let the eigenvector is ϑ, such that ( Aλ I ) ϑ =0 for each of the corresponding eigenvalue.
Now,
For eigenvalue λ=2 ,
( A2 I ) ϑ=0
33
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
( [3 2 1
3 8 3
3 6 1 ]2 [1 0 0
0 1 0
0 0 1 ]) [ x
y
z ]= [0
0
0 ]
[1 2 1
3 6 3
3 6 3 ][ x
y
z ]= [0
0
0 ]
Now reduce the matrix into row echelon form as
[a . b
0 .
0 0 c ]
[ 1 2 1
3 6 3
3 6 3 ] : [ 3 6 3
0 0 0
0 0 0 ]
Now reduce the matrix into reduced row echelon form as
[1 . b
0 .
0 0 1 ]
[3 6 3
0 0 0
0 0 0 ]: [1 2 1
0 0 0
0 0 0 ]
Hence,
[1 2 1
0 0 0
0 0 0 ][ x
y
z ]= [0
0
0 ]
x +2 y z=0 and x=2 y + z
z=0
34
Document Page
Now,
[ x
y
z ]= [2 y +z
y
z ] or ¿ [
2 y
y
0 ] + [ z
0
z ]
Where, yz 0
Let y=1z=1
hence ,
Eigenvector for λ=2 is [2
1
0 ], [ 1
0
1 ]
For eigenvalue λ=6 ,
( A2 I ) ϑ=0
( [3 2 1
3 8 3
3 6 1 ]6 [1 0 0
0 1 0
0 0 1 ] ) [ x
y
z ]= [0
0
0 ]
[3 2 1
3 2 3
3 6 7 ][ x
y
z ]= [0
0
0 ]
Now reduce the matrix into row echelon form as
[a . b
0 .
0 0 c ]
[ 3 2 1
3 2 3
3 6 7 ] : [ 3 2 1
0 8 8
0 0 0 ] 35
Document Page
Now reduce the matrix into reduced row echelon form as
[1 . b
0 .
0 0 1 ]
[ 3 2 1
0 8 8
0 0 0 ] :
[ 1 0 1
3
0 1 1
0 0 0 ]
Hence,
[ 1 0 1
3
0 1 1
0 0 0 ] [ x
y
z ]= [ 0
0
0 ]
x ( 1
3 ) z =0 ,x= 1
3 z
yz =0 ¿ y=z
Now,
[ x
y
z ]=
[ 1
3 z
z
z ]
Where, z 0
Let z=1
hence ,
36
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Eigenvector for λ=6 is
[ 1
3
1
1 ]
Therefore, the eigenvectors are [ 2
1
0 ] , [ 1
0
1 ] ,
[ 1
3
1
1 ]
(c) Condition B=P1 A P
Matrix P=?
Matrix A = [3 2 1
3 8 3
3 6 1 ]
P matrix would be determined based on the eigenvectors of matrix A.
P=
[2 1 1
3
1 0 1
0 1 1 ]
Now for Matrix B:
P1=
[ 2 1 1
3
1 0 1
0 1 1 ]
1
¿
[2 1 1
3
1 0 1
0 1 1

1 0 0
0 1 0
0 0 1 ]
Now reduce matrix to row echelon form
37
Document Page
[a . b
0 .
0 0 c ]
R 2 R 2+( 1
2 ) R 1
[2 1 1
3
0 1
2
7
6
0 1 1

1 0 0
1
2 1 0
0 0 1 ]
R 2 R 3
[ 2 1 1
3
0 1 1
0 1
2
7
6

1 0 0
0 0 1
1
2 1 0 ]
R 3 R 3 ( 1
2 )R 2
[ 2 1 1
3
0 1 1
0 0 2
3

1 0 0
0 0 1
1
2 1 1
2 ]
Reduce the matrix to reduced row echelon form
[1 . b
0 .
0 0 1 ]
38
Document Page
[ 1 0 0
0 1 0
0 0 1
:
3
4
1
2
3
4
3
4
3
2
7
4
3
4
3
2
3
4
]
P1=
[3
4
1
2
3
4
3
4
3
2
7
4
3
4
3
2
3
4
]
Now,
B=P1 A P
¿
[ 3
4
1
2
3
4
3
4
3
2
7
4
3
4
3
2
3
4
] . [ 3 2 1
3 8 3
3 6 1 ] .
[ 2 1 1
3
1 0 1
0 1 1 ]
¿
[3
2 1 3
2
3
2 3 7
2
9
2 9 9
2 ].
[2 1 1
3
1 0 1
0 1 1 ]
B= [ 2 0 0
0 2 0
0 0 6 ]
39
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Hence, the matrix B is [2 0 0
0 2 0
0 0 6 ] .
To determine whether the computed matrix is correct on not based on the eigenvalues
determined in part (a).
If det (B) = multiplication of the eigenvalues
Now,
Debt ( B ) =
|
2 0 0
0 2 0
0 0 6|=2 ( 12 ) 0 ( 0 ) +0 ( 0 ) =24
Multiplication of the eigenvalues (From part a) = 2 * 2 * 6 = 24
It is apparent that both the sides are same and therefore, the computed matrix B is correct.
40
Document Page
41
chevron_up_icon
1 out of 42
circle_padding
hide_on_mobile
zoom_out_icon
logo.png

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]