Vector Space Analysis: Linear Combinations and Independence Tasks

Verified

Added on Ā 2023/05/29

|10
|2154
|216
Homework Assignment
AI Summary
This assignment explores fundamental concepts in linear algebra, focusing on vector spaces, linear combinations, linear independence, and the determination of a basis. It includes problems involving finding linear combinations of vectors, determining the rank and basis of vector spaces, testing sets of vectors for linear independence or dependence, and determining the dimension and basis of spaces spanned by given vectors. The problems are solved using MATLAB, with code snippets provided for each question, demonstrating how to perform the necessary calculations and analyses. Desklib provides students with access to this solved assignment and many other resources, including past papers, to help them succeed in their studies.
Document Page
Table of Contents
........................................................................................................................................ 1
Question 1 ......................................................................................................................... 1
Question 2 ......................................................................................................................... 2
Question 3 ......................................................................................................................... 3
Question 4 ......................................................................................................................... 4
Question 5 ......................................................................................................................... 7
format short
clear
close all
clc
Question 1
disp('-------------------------------------------------------------------')
disp('Question 1 Loading...')
%Part a
u1=[1;1;2;2];
u2=[2;3;5;6];
u3=[2;1;3;6];
u=[u1 u2 u3];
v=[0;5;3;0];
X=u\v % determines the linear combination coordinates for each value
disp('For the First output')
fprintf('%.3fu1+ %.3fu2 %.3fu3 \n ',X(1),X(2),X(3));
%Part B
vr=[1;6;1;4];
Xb=u\vr; % determines the linear combination coordinates for each
value
disp('For the second output')
fprintf('%.1fu1+ %.1fu2 %.1fu3 \n ',Xb(1),Xb(2),Xb(3));
-------------------------------------------------------------------
Question 1 Loading...
X =
-2.0000
2.8333
-2.1667
For the First output
-2.000u1+ 2.833u2 -2.167u3
For the second output
-7.0u1+ 4.0u2 -1.0u3
1
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Question 2
clear
disp('-------------------------------------------------------------------')
disp('Question 2 Loading...')
q1=[1;-2;3;4];
q2=[2;4;5;0];
q3=[-1;0;0;4];
q4=[3;2;1;-4];
q=[q1 q2 q3 q4]
rank(q) %determining the rank of a vector
Qr=rref(q) %Determining the basis of a vector space
%part 2
e1=[0;1;1;1];
e2=[2;2;3;1];
e3=[7;0;1;0];
e4=[5;2;2;1];
e=[e1 e2 e3 e4]
rank(e) %determining the rank of a vector
Er=rref(e) %Determining the basis of a vector space
-------------------------------------------------------------------
Question 2 Loading...
q =
1 2 -1 3
-2 4 0 2
3 5 0 1
4 0 4 -4
ans =
4
Qr =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
e =
0 2 7 5
1 2 0 2
2
Document Page
1 3 1 2
1 1 0 1
ans =
4
Er =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
Question 3
%Part A
clear
% Determining if a set is linearly independent or dependent
disp('-------------------------------------------------------------------')
disp('Question 3 Loading...')
clear
A1=[0,1,-3,4];
A2=[-1,0,0,2];
A3=[0,5,3,0];
A4=[-1,7,-3,-6];
A=[A1;A2;A3;A4] %The set of vectors that form the vector space
R=rank(A)
[rows,~]=size(A)
%Testing for linear dependence
if(R==rows)
disp('The set is linearly independent');
elseif(R < rows)
disp('The set is linearly dependent');
end
% Part B
B1=[0,0,1,2,3];
B2=[0,0,2,3,1];
B3=[1,2,3,4,5];
B4=[2,1,0,0,0];
B5=[-1,-3,-5,0,0];
B=[B1;B2;B3;B4;B5]
R1=rank(B)
[rowb,~]=size(B)
3
Document Page
%Testing for linear dependence
if(R1==rowb)
disp('The set is linearly independent');
elseif(R1 < rowb)
disp('The set is linearly dependent');
end
-------------------------------------------------------------------
Question 3 Loading...
A =
0 1 -3 4
-1 0 0 2
0 5 3 0
-1 7 -3 -6
R =
4
rows =
4
The set is linearly independent
B =
0 0 1 2 3
0 0 2 3 1
1 2 3 4 5
2 1 0 0 0
-1 -3 -5 0 0
R1 =
5
rowb =
5
The set is linearly independent
Question 4
part A
4
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
... A subset S of a vector space is a basis if S is linearly
independent
... and S is a spanning set.
clear
disp('-------------------------------------------------------------------')
disp('Question 4 Loading...')
A1=[1,-2,3,4];
A2=[2,4,5,0];
A3=[-2,0,0,4];
A4=[3,2,1,-4];
A=[A1;A2;A3;A4]
% To determine the dimension of the space spanned by the columns
rank(A)
%To determine the basis of the columns
Ar=rref(A)
% Part B
B1=[0,1,-1,1];
B2=[2,-2,3,1];
B3=[7,0,1,0];
B4=[5,2,-2,-1];
B=[B1;B2;B3;B4]
% To determine the dimension of the space spanned by the columns
rank(B)
%To determine the basis of the columns
Br=rref(B)
% Part C
C1=[0,1,-3,4];
C2=[-1,0,0,2];
C3=[0,5,3,0];
C4=[-1,7,-3,-6];
C=[C1;C2;C3;C4]
% To determine the dimension of the space spanned by the columns
rank(C)
%To determine the basis of the columns
Cr=rref(C)
% Part D
D1=[0,0,1,2];
D2=[0,2,3,1];
D3=[1,3,4,5];
D4=[2,1,0,0];
D5=[-3,-5,0,0];
D=[D1;D2;D3;D4;D5]
% To determine the dimension of the space spanned by the columns
rank(D)
%To determine the basis of the columns
Dr=rref(D)
-------------------------------------------------------------------
5
Document Page
Question 4 Loading...
A =
1 -2 3 4
2 4 5 0
-2 0 0 4
3 2 1 -4
ans =
4
Ar =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
B =
0 1 -1 1
2 -2 3 1
7 0 1 0
5 2 -2 -1
ans =
3
Br =
1.0000 0 0 -0.6000
0 1.0000 0 5.2000
0 0 1.0000 4.2000
0 0 0 0
C =
0 1 -3 4
-1 0 0 2
0 5 3 0
-1 7 -3 -6
ans =
6
Document Page
4
Cr =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
D =
0 0 1 2
0 2 3 1
1 3 4 5
2 1 0 0
-3 -5 0 0
ans =
4
Dr =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
Question 5
clear
disp('-------------------------------------------------------------------')
disp('Question 5 Loading...')
%Part A
v1=[2;1;0;0;0];
v2=[-1;0;1;0;0];
B=[v1,v2];
B1=eye(5);
% adjoining B and B1
A=[B,B1]
rank(A)
At=rref(A)
% The results show that columns 1,2,3,6,7 for the basis for R^5
At(:,4)=[]; %removing column 4
At(:,4)=[]; %removing column 5
disp('The basis of the vector space is:')
7
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
disp(At)
%Part B
clear
v1=[1;0;2;0;0];
v2=[1;1;2;0;0];
v3=[1;1;1;0;1];
V=[v1 v2 v3]
V1=eye(5)
C=[V V1]
rank(C)
Ac=rref(C)
%From the output, columns 1,2,3,4,7 form the vector basis of R^5
Ac(:,5)=[]; %removing column 5
Ac(:,5)=[]; %removing column 6 (new 5th column)
Ac(:,6)=[]; %removing column 8 (new 6th column)
disp('The basis of the vector space is:')
disp(Ac)
-------------------------------------------------------------------
Question 5 Loading...
A =
2 -1 1 0 0 0 0
1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
ans =
5
At =
1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 0 1 -2 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
The basis of the vector space is:
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
V =
8
Document Page
1 1 1
0 1 1
2 2 1
0 0 0
0 0 1
V1 =
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
C =
1 1 1 1 0 0 0 0
0 1 1 0 1 0 0 0
2 2 1 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 1
ans =
5
Ac =
Columns 1 through 7
1.0000 0 0 0 -1.0000 0.5000 0
0 1.0000 0 0 1.0000 0 0
0 0 1.0000 0 0 0 0
0 0 0 1.0000 0 -0.5000 0
0 0 0 0 0 0 1.0000
Column 8
0.5000
-1.0000
1.0000
-0.5000
0
The basis of the vector space is:
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
9
Document Page
0 0 0 0 1
Published with MATLABĀ® R2018b
10
chevron_up_icon
1 out of 10
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]