Maclaurin, Taylor & Binomial Series Expansion Assignment Solution

Verified

Added on  2023/06/03

|4
|1316
|427
Homework Assignment
AI Summary
This document presents a detailed solution to an assignment focusing on Maclaurin, Taylor, and Binomial series expansions. It begins by deriving the Maclaurin series for cosh(x) and then applies Taylor’s Inequality to estimate the error bound when approximating cosh(x) with a 4th order Maclaurin series. The solution also assesses the series' convergence using Taylor's Inequality. Further, the assignment delves into the sinc (sine cardinal) function, utilizing Maclaurin series to validate its special definition at x=0. The Maclaurin series for sin(t^2) is derived and used to approximate the Fresnel-sine integral. Finally, the solution covers the binomial series expansion for √1−x^2, applying it to evaluate the elliptic integral E(k). This comprehensive solution provides step-by-step calculations and explanations for each problem.
Document Page
Order Id 814870
1. .
i) MacLaurin series for cosh(x)
cosh ( x )= ex+ ex
2
MacLaurin series of cosh ( x ) = ex+ ex
2 is defined as:
¿ e0+ e0
2 +
d
dx ( ex +ex
2 ) ( 0 )
1 ! x+
d2
d x2 ( e x+ ex
2 ) ( 0 )
2 ! x2+
d3
d x3 ( ex+ex
2 ) ( 0 )
2! x3 +
e0+ e0
2 =1
d
dx ( ex +e x
2 ) ( 0 ) =0 d2
d x2 ( ex+ ex
2 ) ( 0 )=1 d3
d x3 ( ex+ ex
2 ) ( 0 )=0 d4
d x4 ( ex +e x
2 ) ( 0 )=1
d5
d x5 ( ex+ ex
2 ) ( 0 )=0 d6
d x6 ( ex+ ex
2 ) ( 0 ) =1 d7
d x7 ( ex+ ex
2 ) ( 0 )=0 d8
d x8 ( ex+ ex
2 ) ( 0 ) =1
¿ 1+ 0
1 ! x+ 1
2 ! x2 + 0
3 ! x3+ 1
4 ! x4 + 0
5 ! x5 + 1
6 ! x6 + 0
7 ! x7 + 1
8 ! x8 +¿ 1+ 1
2! x2+ 1
4 ! x4 + 1
6 ! x6 + 1
8 ! x8 +
Thus the series representation is;

n=0
x2n
( 2 n ) !
ii) Taylor’s inequality says
|R4 ( x )|=|f ( x ) T 4 ( x )| M
( 4 +1 ) ! x4 +1T 4 ( x )=1+ 1
2 ! x2 + 1
4 ! x4
f 5 ( x )= d5
d x5 ( exex
2 )= 1
2 ( exex ) f 5 ( 1 ) =M = e1e1
2
The Taylor’s inequality becomes:
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
|R4 ( x )| e1e1
2×5 ! |x5
| |R4 ( x )| e1e1
2×5 ! |15
|= e1 e1
240 0.009793343
So the approximation is accurate to within e1 e1
240 0.009793343
iii) From part (ii), the convergence of cosh(x) can be determined by ratio test, thus:
lim
n ( an+1
an ) = lim
n
( x2 (n+1)
( 2(n+1) ) !
x2 n
( 2 n ) ! )=0
Therefore the series converges for all x
2. sinc (sine cardinal) function
sinc ( x ) = { 1 for x=0
sin ( x )
x Otherwise
MacLaurin series of cosh ( x ) = ex+ ex
2 is defined as:
¿ sinc(x)+
d
dx ( sinc ( x) ) ( 0 )
1 ! x+
d2
d x2 ( sinc(x ) ) ( 0 )
2 ! x2+
d3
d x3 ( sinc( x ) ) ( 0 )
2 ! x3+
sin ( x )
x = { 1 x =0
sin ( x )
x x 0
d
dx ( sinc( x) ) =
{ 0 x=0
xcos ( x )sin ( x )
x2 x 0
d2
d x2 ( sinc( x ) )=
{ 1
3 x=0
( 2x2 ) sin ( x )2 x cos (x )
x3 x 0
Using the first and second order:
sinc ( x ) =1 x2
3! + x4
5 ! sinc ( x ) =
n=0

( 1 ) n x2 n
( 2 n+1 ) !
Evaluating the limit of sinc(x) as x approaches 0
Document Page
lim
n 0
sinc ( x ) = lim
n 0 ( sin ( x )
x )= lim
n 0 (1 x2
3! + x4
5 ! )=1
3. MacLaurin series for sin(s^2)
¿ sin ( t2 ) +
d
dx ( sin ( t2 ) ) ( 0 )
1 ! x+
d2
d x2 ( sin ( t2 ) ) ( 0 )
2 ! x2+
d3
d x3 ( sin ( t2 ) ) ( 0 )
2 ! x3+
sin ( 0 ) =0
d
dx (sin ( t2 ) ) ( 0 ) =0 d2
d x2 ( sin ( t2 ) ) ( 0 ) =2 d3
d x3 ( sin ( t2 ) ) ( 0 )=0 d4
d x4 (sin ( t2 ) ) ( 0 )=0 d5
d x5 ( sin ( t2 ) ) ( 0 )=0
d6
d x6 ( sin ( t2 ) ) ( 0 )=120 d7
d x7 ( sin ( t2 ) ) ( 0 )=0 d8
d x8 ( sin ( t2 ) ) ( 0 )=0 d9
d x9 ( sin ( t2 ) ) ( 0 ) =0
d10
d x10 (sin ( t2 ) ) ( 0 )=30240
¿ 1+ 0
1 ! x+ 2
2 ! x2 + 0
3 ! x3+ 0
4 ! x4 + 0
5 ! x5 +120
6 ! x6+ 0
7 ! x7 + 0
8 ! x8 + +0
9! x9 + 30240
10 ! x10
¿ t 2 1
6 t6 + 1
120 t10 The Fresnel-sine integral:

0
x
sin ( t2 ) dt=
0
x
( t2 1
6 t6 + 1
120 t10 ) ¿ x3
3 x7
42 + x11
1320
4. Binomial series for 1
1x2
1
1x2 = ( 1x2 )
1
2
1
1x2 =1+ 1
2 (x2 ) +
1
2 (3
2 ) (x2 )2
2 ! +
1
2 (3
2 )(5
2 ) (x2 )3
3 ! + ¿ 1+ x2
2 + 3 x4
8 +5 x6
16 +
Now to evaluate E (k) let x2=k2 sin2 ( t ) x=ksin(t)E ( k ) =
0
π
2
1
1k2 sin2 ( t ) dt
Document Page
In equation 1+ x2
2 + 3 x4
8 +5 x6
16 + replace x with ksin ( t )
E ( k ) =
0
π
2
( 1+ ( ksin ( t ) )
2
2 + 3 ( ksin ( t ) ) 4
8 + 5 ( ksin ( t ) )
6
16 + ) dt¿ ¿ ¿¿ π
2 + π k 2
8 + 9 π k 4
128 + 25 πk6
1024 +
¿ π
2
n=0
( 2 n1 ) 2 k2 n
23n
chevron_up_icon
1 out of 4
circle_padding
hide_on_mobile
zoom_out_icon
logo.png

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]