Calculus 1 (MATH 1063) Problem Solving Exercise 1, SP2, 2020

Verified

Added on  2022/07/29

|11
|331
|15
Homework Assignment
AI Summary
This document provides a detailed solution to a Calculus 1 (MATH 1063) problem-solving exercise. The solution covers a range of calculus concepts, including limits, continuity, and derivatives. The document demonstrates the application of the limit definition to find derivatives, and it also addresses the product and quotient rules for differentiation. Furthermore, it explores tangent lines and the area under a curve, integrating these concepts with problem-solving techniques. Finally, the solution includes analysis of functions, including their domains, and provides a step-by-step breakdown of each problem, making it a valuable resource for students studying calculus.
Document Page
QUESTION ONE
(a) From the given graphical plot of the function f ( x )= x+1
x21 ,
The limit as x approaches 1 from the right is + i.e. lim
x 1+¿
[ x+1
x21 ]=+ ¿
¿
Whereas
The limit as x approaches 1 from the right is i.e. lim
x 1¿
[ x +1
x21 ] = ¿
¿
Since
lim
x 1+¿
[ x+1
x21 ] lim
x1 ¿
[ x+ 1
x2
1 ] ¿
¿¿
¿
, the limit does not exist
(b)
lim
x1 [ x +1
x2 1 ] = lim
x 1 [ x +1
(x1)( x+1) ]
¿ lim
x1 [ 1
x1 ]
¿ 1
11 =1
2
lim
x 1 [ x+ 1
x21 ]=1
2
(c) For f ( x) to be continuous at x=1 :
i) f ( x) must be defined at x=1 ; however, f (1) is undefined at x=1
ii) The limit must exist i.e.
lim
x1 [ x +1
x2 1 ]=1
2 as shown in part (b). Thus the limit exists
iii) lim
x1
f ( x )=f (1 ) ; however, lim
x1 [ x +1
x2 1 ] f (1 ) as the function is not defined at
x=1
Since not all thecontinuity conditions have been met , the function is discontinous at
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
x=1 . However , thediscontinuity is a removable one .
QUESTION TWO
From the definition of differentiation, d
dx f ( x ) =lim
h 0
f ( x+h ) f ( x)
h
d
dx [2 x2 +3 x +58 ]=lim
h 0
[2 ( x +h )2 +3( x +h)+58 ] [2 x2 +3 x+58 ]
h
Expanding the numerator,
d
dx f ( x ) =lim
h 0
[ 2( x2+2 hx +h2 )+ 3 x +3 h+58 ] [ 2 x2 +3 x +58 ]
h
¿ lim
h 0
[2 x24 hx2 h2 ¿+ 3 x +3 h+58 ] [2 x2 +3 x +58 ]
h
¿ lim
h 0
[ 2 x2+2 x2+ 3 x 3 x4 hx 2h2+3 h+5858 ]
h
¿ lim
h 0
[4 hx2 h2 +3 h ]
h
¿ lim
h 0
h [2 h4 x+3 ]
h
¿ lim
h 0
[2 h4 x +3 ]
¿2 ( 0 )4 x+ 3=4 x +3
d
dx [2 x2 +3 x+58 ]=4 x+3
Document Page
QUESTION THREE
(a) Given p ( x ) = ( 2 x2 +3 x +1 ) ( x3 x1 ),
By Product rule i.e.
p' ( x )= [u ( x ) . v ( x ) ]'
=u' ( x ) . v ( x )+ u ( x ) . v' ( x )
For u ( x )= ( 2 x2+3 x +1 )v ( x ) = ( x3x1 )
p' ( x ) = ( x3 x1 ) d
dx [ 2 x2 +3 x +1 ] + ( 2 x2 +3 x+ 1 ) d
dx [ x3x1 ]
Applying power rule,
p' ( x )= ( x3 x1 ) ( 4 x +3 ) + ( 2 x2+ 3 x +1 ) (3 x21)
(b) Given q ( x )= 2 x2 +3 x +1
x3x1
Applying the quotient rule i.e.
q' ( x ) = [ u( x )
v( x) ]
'
=u' ( x ) . v ( x ) u ( x ) . v ' ( x)
v ( x)2
For u ( x )= ( 2 x2+3 x +1 )v ( x ) = ( x3x1 )
q' ( x ) =
( x3x1 ) . d
dx [ 2 x2+ 3 x +1 ] ( 2 x2 +3 x+1 ) d
dx [ x3x1 ]
( x3x1 ) 2
Document Page
¿ ( x3 x1 ) ( 4 x +3 ) ( 2 x2 +3 x+ 1 ) (3 x21)
( x3x1 )
2
q' ( x )= ( x3 x1 ) ( 4 x +3 ) ( 2 x2 +3 x+1 ) (3 x2 1)
( x3x1 )2
(c) Given f ( x )=cos ( ax ) sin (ax ),where a is constant
By Product rule i.e.
f ' ( x ) = [ u ( x ) . v ( x ) ] '
=u' ( x ) . v ( x ) +u ( x ) . v' ( x )
For u ( x )=cos (ax )v ( x )=sin(ax) ,
f ' ( x )=sin (ax) d
dx [ cos ( ax ) ]+ cos ( ax ) d
dx [ sin( ax) ]
¿ sin ( ax ) a sin ( ax ) +cos ( ax ) a cos (ax)
¿ a cos2 (ax )a sin2 (ax)
f ' ( x )=a [ cos2 ( ax ) sin2 ( ax ) ]
(d) Given h ( x ) = tan ( x )
cos x
Applying the quotient rule,
h' ( x )=
[ u(x )
v (x ) ]'
= u' ( x ) . v ( x )u ( x ) . v '( x )
v ( x)2
For u ( x ) =tan( x)v ( x ) =cos x
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
h' ( x ) =
cos x . d
dx [ tan( x ) ] ( tan( x) ) d
dx [ cos x ]
cos2 ( x)
Recognizing that [ tan ( u ( x ) ) ]'
=sec2 (u ( x ) ) u '( x ) [ cos (x) ]'
=sin( x)
h' ( x ) =sec2 ( x) cos x . d
dx [ x ] ( tan ( x ) ) ¿ ¿
h' ( x )=sec2 ( x) cos x . 1
2 x
1
2 1
+ ( tan ( x ) ) ¿ ¿
h' ( x )=sec2 ( x) cos x . x
1
2
2 + ( tan ( x ) ) ¿ ¿
h' ( x )= sec2 ( x) cos x
2 x + ( tan ( x ) ) ¿ ¿
h' ( x ) = sec2 ( x)
2 x cos (x) + ( tan ( x ) ) ¿ ¿
Document Page
QUESTION FOUR
(a) Two conditions must be met:
i) Common point of intersection of parabola and tangent:
2 x1=x2
x22 x+1=0
( x1 ) 2=0 Factorize
x=1
y=2 x1=x2 =1
( 1,1 ) is the point that the tangent touchesthe parabola
ii) Gradient of the curve at point (1,1) should be equal to that of the tangent line
Gradient function of the parabola , dy
dx =2 x=2 ( 1 ) =2
Gradient of the tangent line=2
2= y1
x1 ; y =2 x1 {confirms the equation of thetangent }
(b) ( 3,5 ) =(x , y )
y=2 x1=2 ( 3 )1=61=5
The value of x=3, gives y=5 based on the model y=2 x1. Hence the line passes
through point (3,5)
Document Page
(c) Gradient function, dy
dx =2 x
gradient of theline at the point of withthe curve y=x2
Let (x , y ) be the point of intersection between the tangent line and the curve,
( x , x2 ) ( 3,5 ) are points on the tangent line whose gradient is 2 x
But m= y5
x 3
2 x= x25
x3
Simplifying,
2 x ( x3 )=x25
x26 x +5=0
Factorizing ( x1 ) ( x5 )=0 ; x =1x=5
Valid x = 5
Gradient = 10
10= y 5
x3 ; y5=10 x30
y=10 x25
Equationof the line is: y =10 x25
Coordinate of the point wheretouches is :(5 , 25)
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
QUESTION FIVE
(a)
x 0 3
y 6 0
(b) x-intercept of the line is
0=2 x+6 ; x=3
x<3
Beyond 3 , therectangle will be outside the region bounded by line y =2 x +6
Document Page
(c)
Area=Length x Width
Length= y=2 x +6
Width=x
Area= ( 2 x +6 ) x=2 x ( 3x ) square units
(d)
d
dx ( Area )=0 ,¿ get the valueof x for the largest area
d
dx ( Area )=2 ( 3x )+2 x (1 ) product rule
¿ 62 x 2 x=0
x= 6
4 =3
2
y=2 (3
2 )+6=3
Largest area is thus,
¿ 3 × 3
2 =4.5 square units
Document Page
QUESTION 6
a)
f can validly operate on all real values of x except at x = 1
Domain : [ Solution : x <1x >1
Interval notation : ( , 1 ) ( 1 , ) ]Range : [ Solution : f ( x )< 0f (x)> 0
Interval notation :( , 0) (0 , ) ]
b)
f ( x ) = 1
1x = ( 1x ) 1Let u=1x du
dx =1f =u1 ; df
du =u2By chain rule ,
f ' ( x )= df
du × du
dx = (1 ) (u2 ) =u2 ¿ 1
( 1x ) 2
c)
g(x) can validly operate on all real values of x except at x = 0
Domain : [ Solution : x <0x >0
Interval notation : (, 0 ) ( 0 , ) ]Range : [ Solution : f ( x ) <1f ( x ) >1
Interval notation : ( ,1 ) ( 1 , ) ]
d)
g ( x ) =1 1
x ¿ 1x1 g' ( x ) =0 ( x2 )=x2¿ 1
x2
e)
f ( g ( x ) ) = 1
1g ( x ) where g ( x ) =1 1
x Expressing g(x) as a single fraction, f ( g ( x ) ) reduces
to,
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
¿ 1
1( x1
x )
Multiplying each term by x, we get
x
x(x1)= x
xx+1 =x
f)
From the domains of f(x) and g(x) found above, the value of x for which g(x) = 1 does
not exist.
Domain of f ( g ( x ) ) is all real number s except at x=0
g)
fog ( x )= 1
1g ( x ) = ( 1g ( x ) )1
where g ( x ) =1 1
x Let u=1g ( x ) so that fog ( x ) =u1
du
dx =0g' ( x ) =g' ( x )
d
du ( fog ( x ) ) =u2=1
u2
By chain rule,
d
dx ( fog ( x ) )= d
du ( fog ( x ) ) × du
dx chainrule ¿ g' ( x )
u2
g' ( x ) = 1
x2 { ¿ part d } u=1g ( x ) =1 ( 1 1
x )= 1
x u2= ( 1
x )2
= 1
x2
d
dx ( fog ( x ) ) = g' ( x )
u2 = 1
x2 ÷ 1
x2 =1
( fog ( x ) ) '=1
chevron_up_icon
1 out of 11
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]