Math 1314 Chapter 1 Homework Assignment: Detailed Solutions Guide

Verified

Added on  2022/12/09

|20
|293
|65
Homework Assignment
AI Summary
This document provides a comprehensive solution set for a Math 1314 Chapter 1 homework assignment. The solutions cover a wide range of algebra topics, including simplifying expressions involving complex numbers, performing operations with complex numbers, solving quadratic equations using various methods (zero-factor property, square root property, completing the square, and the quadratic formula), and solving equations for indicated variables. Furthermore, the solutions encompass absolute value equations, and provide detailed explanations for each step. The assignment also includes problems from Math 1314 HW 4 (Chapter 4) covering topics like functions, inverse functions, logarithmic and exponential forms, and the use of logarithmic properties.
Document Page
1
Math 1314 Chapter 1 Homework
Question 1 Part a
18= 1 ×2 × 9=3 2 1=3 2i
Question 1 Part b
3 8= (3)(8)= 24= 4 × 6=2 6
Question 1 Part c
30
10 = 30
10 = 3
Question 1 Part d
6 2
3 = (6 ) (2 )
3 = 12
3 = 4=2
Question 2
3+ 18
24 =3+ 1× 2× 9
24 =3+3 i 2
24 =1
8 + 2
8 i
Question 3-part a
( 3+2 i )+ ( 93 i )= (3+ 9 ) + ( 2 i3 i )=12i
Question 3-part b
( 25 i ) (3+4 i ) (2+ i )= ( 23+2 )+ (5i4 ii ) =110 i
Question 4 part a
( 32i ) 2= ( 32 i ) ( 32i ) =3 ( 32i ) 2i ( 32 i ) =96 i6 i4=512 i
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
2
Question 4 part b
( 2+4 i ) (1+3 i )=2 (1+3 i )+ 4 i (1+ 3i ) =2+6 i4 i12=14 +2i
Question 5 part a
2i
2+i =2i
2+ i × 2i
2i = ( 2i ) ( 2i )
( 2+i ) ( 2i ) =2 ( 2i )i ( 2i )
2 ( 2i ) +i ( 2i )
¿ 42 i2i1
42 i+2i+1 =34 i
5 = 3
5 4 i
5 =0.60.8 i
Question 5 part b
2
3i = 2 ×3 i
3 i×3 i = 6i
9 =2
3 i
Question 6 part a
i22=(i¿¿ 2)11= ( 1 ) 11=1¿
Question 6 part b
i32=(i ¿¿ 2)16= ( 1 ) 16=1 ¿
Question 7 part a
x25 x+ 6=0
x25 x+6=x22 x+ 3 x +6=0
x22 x3 x+6=x ( x 2 )3 ( x2 )=0
( x3 ) ( x2 ) =0
( x3 )=0 , x=3
Document Page
3
¿ ( x2 ) =0. x=2
x=2x=3
Question 7 part b
4 x2 4 x +1=0
4 x2 4 x +1=4 x22 x2 x +1=2 x ( 2 x1 ) 1 ( 2 x1 ) =0
( 2 x1 ) (2 x1 )=0
2 x1=0 , 2 x=1 , x= 1
2
Hence , x=1
2
Question 8 part a
x2=16 , x= x2 = 16
x=± 4
Question 8 part b
( 3 x1 )2=9 x21=12
9 x2=1+12=13
x2= 13
9
x2=x= 13
9 =± 13
3
Document Page
4
Question 9 part a
2 x2 x28=0
x2 x
2 14=0
x2 x
2 =14
Take half of the coefficient of x and square it then add the result to both sides of the equation to
get:
( 1
2 . 1
2 )
2
= 1
16
x2 x
2 + 1
16 =14+ 1
16 = 225
16
(x 1
4 )2
= 225
16
x=1
4 ± 15
4
x=1
4 + 15
4 =4x=1
4 15
4 =3.5
Question 9 part b
x22 x2=0
x22 x=2
(2 × 1
2 )
2
=1
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
5
x22 x+1=2+1
( x 2
2 )
2
=3
( x1 ) 2=3
x=1 ± 3=2.7320.732
Question 10
x2=2 x5
x22 x+5=0 , a=1 ,b=2 , c=5
x=b ± b24 ac
2 a =2 ± (2)24 (1 ×5)
2(1) =2 ± 16
2 = 2 ± 4 i
2 =1± 2 i
x=1+2 ix=12 i
Question 11 part a
F × r
kM = kM v2
r × r
kM
v2= Fr
kM
V =± Fr
kM
Question 11 part b
2 x2 +4 xy3 y2=2
2 x2 + 4 yx ( 2+3 y2 ) =0
Document Page
6
a=2 , b=4 y , c= ( 2+3 y2 )
x=b ± b24 ac
2 a =4 y ± (4 y)2 +4 ×2 ( 2+3 y2 )
2(2) =4 y ± 16 y2 +16+24 y2
4
x=4 y ± 40 y2 +16
4
Question 12
Let the integers be n ,n+ 2
n ( n+2 ) =224
n2 +2 n224=0
n=2± (2)24(224 )
2 =2 ± 30
2 =1± 15=1416
The integers are14161614
Question 13
Let the integers be n ,n+ 2
n2 + ( n+2 )2=202
n2 +n2+ 4 n+ 4=202
n2 +n2+ 4 n+4202=0
2 n2 +4 n198=0
2n2
2 + 4 n
2 198
2 = 0
2 =0
Document Page
7
n2 +2 n99=0
n=2± (2)24(99)
2 =2 ±20
2
n=9n=11
The numbers are 911119
Question 14
L=2 W
Perimeter=2 L+2 W
Area=LW
2 ( 2 L+2 W )=LW
4 L+ 4 W =LW
But L=2 W
4 (2 W )+4 W =(2W ) W
12 W=2 W 2
6 W =W 2
W 2
W =6 W
W
W =6
L=2 W =2× 6=12
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
8
Question 15
Let the length of the longer leg=n , shorter leg=90 m, hypoteneuse=30+n
( 30+n ) 2=n2 +902
900+60 n+ n2=n2+8100
60 n=8100900=7200
n=7200
60 =120 m
Question 16
2 x +5
2 3 x
x2 =x
( 2 x +5 ) ( x2 )3 x (2)
2 ( x2 ) =x
2 x2 +5 x4 x106 x
2 x 4 =x
2 x2 +5 x4 x106 x=x(2 x4)
2 x2 5 x 10=2 x24 x
Rearranging the equation yields:
5 x+ 4 x=10 , x=10
Question 17
2 x +1
x2 3
x = 6
x22 x
Document Page
9
( 2 x +1 ) x3( x2)
( x 2) x = 6
x22 x
2 x22 x+ 6
x22 x = 6
x2 2 x
2 x2 2 x +6=6
2 x2 2 x +12=0
x= 2± (2)24(2 ×12)
2(2) =2± 92
2 =2± 2 23 i
2 =1 ± 23 i
x=1+ 23 ix=1 23 i
Question 18
x 2 x+3=0
x2=2 x+3
x22 x3=0
x= 2± (2)24(1 ×3)
2 = 2± 4
2 =1± 2
x=1+2=3x=12=1
x=3x=1
Question 19
2 x +5 x +2=1
2 x +5=1+ x +2
Document Page
10
Squaring both sides:
( 2 x +5 ) 2= ( 1+ x +2 ) 2
2 x+5=1+2 x +2+x +2
2 x+51x2=1+2 x +2+ x +21x 2
x +2=2 x+2
Square both sides to get:
( x +2 )2= ( 2 x +2 )2
x2+ 4 x +4=4 ( x +2 )=4 x+8
x2+ 4 x +44 x8=0
x24=0
x2=4
x=± 2
x=2x=2
Question 20
( x3 )
2
5 =4
( ( x3 )
2
5 )5
2
=4
5
2
x3= ( 22 )
5
2 =25=32
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
11
x=32+3=35
Question 21
2 x47 x2 +5=0
Let x2=ux4=u2
2 x47 x2 +5=2 u27 u+ 5=0
u=7 ± (7)24( 2×5)
2(2) = 7 ±3
4
u=73
4 =1u= 7+3
4 =2.5
x2=1x2=2.5
x=± 1x=± 2.5
x=1 , x=1 , x= 2.5 , x= 2.5
Question 22 part a
3 ( x+5 ) +1 5+3 x
3 x+ 15+1 5+3 x
3 x+ 16 5+3 x
3 x3 x 516
0 11
Hence, the solution is true for all x. That is (, ) in interval notation.
Document Page
12
Question 22 part b
2>6 x +3>3
2>6 x +36 x+3>3
23 >6 x+33
1>6 x
x > 1
6
x > 1
6
6 x +33>33
6 x >6
x 6
6
x <1
Combining the two solutions we get:
1
6 < x<1
¿ interval notation ( 1
6 , 1)
Question 22 part c
4 x +7
3 2 x+5
chevron_up_icon
1 out of 20
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]