Calculus II: Final Exam Solutions - Math 221, Fall 2017 & 2018

Verified

Added on  2022/09/11

|7
|346
|17
Homework Assignment
AI Summary
This document presents solutions to final exams for Math 221, covering both Fall 2017 and Fall 2018. The solutions encompass a range of topics, including vector fields, the divergence theorem, Green's theorem, and Stokes' theorem. Specific problems address concepts such as the angle between vectors, the curl of a vector field, path independence, and the application of these theorems in various contexts. The solutions detail the application of theorems, calculations, and provide explanations for each step. The document includes solutions to problems from different exam years, offering a comprehensive guide for students studying calculus and vector analysis. The solutions are designed to aid in understanding and mastering the material covered in the Math 221 course.
Document Page
FINAL EXAM FALL 2017
Question 1
a) Fdr=|F |.dr¿ cos θ ¿
We see that the angle between F and dr is always acute
Thus θ (0 , π
2 )
cos θ>0
Therefore, since all elements are positive, this is always positive
b) The angle between ldr is always acute and hence all elements being positive the result is
always positive.
c) Curl F represents the vector field perpendicular to the plane of F. Thus the angle between the
two is π
2 hence the cosine is zero. This makes the result to be also zero.
d) S: x2+ y2+z2=a2
Thus this depends on all the other terms
Question 2
a) C.
b) A
c) A
d) C
e) A
f) C
g) A
Question 3

C

F . dr=
dx ρ
y
Using Greens’ theorem
¿(3 x)dA
¿
π
4
π
4

0
2
(3 rcosθ)rdrdθ
¿ 3(sin θ)π
4
π
4 r3
3 0
2
¿ δ ¿
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
¿ δ ( 1
2 + 1
2 )
¿ δ 2
Question 5
Part (a)
curl of F=
i j k
δx δy δz
ysin x cos x +2 z y e y2
e y2
+2 z
¿ i ( (e y2
+2 x ) ( 2 y )2 y e y2
) j ( 00 ) + k ¿
at ( 0,0,0 ) the field is conservative
ysinxdx=+ ycos x
¿ ¿
( e y2
+ 2 z ) dz=z e y2
+ ¿ z2 ¿
Thus the potential function is given by;
f ( x , y , z=F1=z e y2
+ ycos x + z2)
Part b
r ( t )=¿
r ( 0 ) = ( 0,0,0 )
r ( 1 ) = ( π , 1,1+ 0 ) =(1,1,0)
1 ( e12
) + ( 1 ) cos π +1 ¿(0+ 0+0)
¿ e1+1
¿ e
Question 7
By Stoke’s theorem,
Document Page

s

curl F . dA=
c

Fdr
Where C is a circle curved around the y-axis at y=1
r ( t ) =( 2cost t , 1,2 sint )
Since the radius of the circle is 2,
r' ( t ) =¿
F ( r ( t ) )=(2 sin t e' , 4 sin2 t eacos2 t , 2 cos t e ')
F ( r ( t ) ) .r ' ( t )=4 sin2 te+0+4 e cos2 te
¿ 4 e ( sin2+cos2 t ) =4 e ( 1 )=4 e
F . dr =
0
2 π
Fr ( t ) . r' ( t ) . dt
¿
0
2 π
4 e . dt
¿ 8 πe
FINAL EXAM FALL 2018
Question 1
a) F × curl F
Let F=(F1 , F2 , F3)
curl F=¿
i j k

x

y

z
F1 F2 F3
¿
F × curl F=
i j k
F1 F2 F3
F3
y F2
x
F1
z F3
x
F1
y F2
x
Thus F is a vector valued
b) Div(grad f)
grad f = f
Thus,
¿ ( grad F )= . f
¿ 2 f
¿ 2 f
x2 + 2 f
y2 + 2 f
z2
Document Page
So, div(grad f) is scalar valued.
c) Div(div f)
¿ f = f =
x i+
y j+
z
This does not make sense because we cannot find the dot-product of a vector and scalar value.
Thus nonsense.
d) Grad(div F)
¿ F= F=scalar value function
grad (¿ F )=( . F )
since is a vector value , . F is a scalar value
there product is also a vector value
Therefore, grad (div F) is a vector value
e) Div (grad F)
grad F= F
There is no usual multiplication of two vectors
So grad F is nonsense and as a result so is div (grad F)
Question 2
By Greens’ theorem,

c

F . dr=
c

Mdx+ Ndy
¿
D

( dN
dx dM
dy ) .dA
where M = y3 ln x , N= y2 +1+3 x
dM
dy =3 y2 ; dN
dy =3
Thus
c

Fdx=
D

(33 y2) . dA
x= y2=1
y=±1
¿
1 y 2
1 1
( 33 y2)dx . dy=3
1
1
( 1 y2 ) ¿ y2
1 dx ¿

c

F . dr=¿ 3
1
1
( 1 y2 ) (1 y2 ) dy ¿
¿ 3
1
1
( 1+ y42 y2 )dy
¿ 3 ( y+ y5
5 2
3 y3
)1
1
¿ 3 (2+ 2
5 2
3 (2) )
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
¿ 3( 16
15 )
¿ 16
5
Question 3
Apply divergence theorem for closed surface as,

s

R . dS=
E

(3 x2 +3 y2 +3 z2) dV
¿ 3
E

(x2 + y2+ z2 )dV
¿ 3
E

P2 dV =3
0
2 π

0
π
2

1
2
( P2 )P2 sin dpd
¿ 3 ( 2 π ) cos p5
5 1
2
¿ 3(2 π )(1) 321
5
¿ 6 π ( 32
5 )
¿ 186
5 π
Question 4
a) For fields to be path-independent, the curl should be zero
Thus, × F=0
curl of F=
i j k
δx δy δz
A ysin x cos x +2 z y e y2
B e y2
+2 z
¿ i ( ( e y2
+2 x ) ( 2 y ) 2 y e y2
) j ( 00 ) + k ¿
atB= ( 0,0,0 ) the field is conservative
ysinxdx=+ ycos x
¿ ¿
( e y2
+ 2 z ) dz=z e y2
+¿ z2 ¿
MATH 221
DEC 2016
Document Page
Question 1
a) v . u
¿ ( 1 ×1 ) + ( 2× 1 ) + (2 ×0 )
¿ 1+2+0
¿ 3
b) |v|= ((1¿¿ 2)¿+(22 )+(22 )) ¿ ¿
¿ 17
¿ 4.123
c)
Question 2
a) Velocity , v = dr (t )
dt
¿ 2 t2
b)
Question 3
a) Gradient
Vf ( x , y , z ) = d x2
dx + dsin( yz )
dy + dsin( yz )
dz
¿ ¿
b) The steepest part is found when
Vf ( x , y , z )= ( 0,0,0 )
Question 5
a) ¿ F= F
¿ ¿)
¿ ¿)
b)
b
curl of F=
i j k
δx δy δz
x2 y +2 z 2 y 1
¿ 00+0
¿ 0
c) F is a path independent vector because its curl is zero
d) F is not an incompressible vector field because its divergence is not zero
Document Page
Question 6
a) Parametrization of the cylinder
r ( θ , z ) =( cos θ , sinθ , z ), θ ( 0 ,2 π ) , z R
chevron_up_icon
1 out of 7
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]