Math Assessment 1: Trigonometry, Calculus, Algebra and Integration

Verified

Added on  2023/01/03

|27
|3448
|34
Homework Assignment
AI Summary
This document provides a complete solution set for Math Assessment 1. The assessment covers a wide range of mathematical concepts including arithmetic and geometric progressions, infinite series, binomial expansions, and sketching trigonometric graphs. It explores trigonometric identities, equations, and applications within right-angled triangles. Additionally, the solutions delve into calculus, addressing differentiation, integration, and the application of substitution methods. Further, the document includes solutions to differential equations, partial fraction decomposition, and parametric equations. The assignment also assesses understanding of limits, series convergence, and basic algebraic manipulations. The solutions offer detailed step-by-step explanations to ensure a comprehensive understanding of each problem.
Document Page
Math Assessment
1
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
l. a) Find the sum of 8 terms of these series:
(i) 1+4+7
It is an AP series with AP with a = 1 and d = 3
The sum of n terms of an AP is
Sn = (n/2)[2a+(n-1)d].
Therefore, the sum of 8 terms is
S8 = (8/2)[2*1+(8–1)*3]
= (8/2)[2+7*3]
= (4)(23)
Answer= 92
(ii)l+4+16+…..
an=a1×rn−1
a1= 1
r=4/1=16/4=64/ 16=4
So, sum of 8 terms will be
1*48-1
4-1
= 65536-1
3
Ans= 21845
2
Document Page
1. b) Find the sum to infinity Of these series:
(i) 10+5+2.5…
= a1 (1-rn) / (1-r)
= infinite series means rn= 0
So, 1-rn = 1
So, S∞ = a1 / (1-r ).
=10/(1-0.5)
=10/0.5
= 20
(i) 1-1/2+1/4…
= a1 (1-rn) / (1-r)
= infinite series means rn= 0
So, 1-rn = 1
So, S∞ = a1 / (1-r ).
=1/(1-(-0.5))
=1/1.5
= 0.667
2 a) Find the coefficient of x3 in the expansion of (l + 3x)5
=Tr+1= 5Cr (1)r (3x)5-3
=put r=3
T3+1=5C3 (1)3 (3x)2
=10 (1) (3x)2
=10 (3x)2
3
Document Page
2 b) Find the coefficient of x5 in the expansion of (a-2x)7
=Tr+1= 7Cr (a)r (-2x)7-r
=put r=5
T5+1=7C5 (a)5 (-2x)2
=21 (a)5 (-2x)2
=21 a5 (4x2)3
3. Sketch the graph of
a)
y= sin (x-90)
4
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
y= 1+sin 2x
5
Document Page
b) y= tan ^ 1/2 x
6
Document Page
y= 1-tan ^1/2x
4) .
7
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
6) Sketch a right-angled triangle with the shorter sides 3 cm and 4 cm, and label one of the non-
right angles a.
5
3
4
a)Write as. fractions:
(i) tan a = 5/4
(ii) sin a = 5 /3
(iii) cos a = 4/3
(iv) sin2 a = 25/ 9
(v) cos2 a = 16/ 9
b) Verify that
(i) tan a = sin a / cos a
Ans: tan a= 15 / 12
(ii) (ii) sin2 a + cos2 a = 1
Ans: 25/ 9+ 16/ 9 = 41/ 9
8
Document Page
7. Solve these trig equations in the range 0° to 360°:
a) Sin 0 = 0.8
0.01396218
b) tan 20 = —1.5
0.36397023
c) 3 sin 0 4 cos 0
(3cosθ−4sinθ) 2=0
3cosθ−4sinθ=0
C) sin2 0 = 2(cos 0 + 1)
(sin θ +2cosθ)2=12
sin2θ+4cos2θ+4sinθcosθ=1
sin2θ=1−cos2θ
cos2θ=1−sin2θ
2sinθcosθ=2
9
Document Page
8) f(x) = / sin x / for 0 < x < 27
/sin x/ > ½
10
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
/sin x/>+ x 1 > -43/2
9. A team of four is selected from a group of 4 girls and 5 boys.
a)How many different selections are possible?
Ans: 12
b)What is the probability that the team will be all girls?
Ans: 4/ 9
Assignment-8
1) Use the substituton
a)
i) \int \frac{x}{\sqrt{2x^2}-1}dx
11
Document Page
=\int \frac{1}{4\left(\sqrt{u}-1\right)}du
=\frac{1}{4}\cdot \int \frac{1}{\sqrt{u}-1}du
=\frac{1}{4}\cdot \int \frac{2\left(v+1\right)}{v}dv :
= \frac{1}{4}\cdot \:2\left(\sqrt{2x^2}-1+\ln \left|\sqrt{2x^2}-1\right|\right)
ii) \frac{d}{dx}\left(y=cos2x\right)
= \frac{d}{dx}\left(y\right)=-\sin \left(2x\right)\cdot \:2
\frac{d}{dx}\left(y=\:x\:in\:x\right)
iii)
\frac{d}{dx}\left(y=\:\frac{x^2+1}{x+1}\right)
= \frac{d}{dx}\left(y\right)=\frac{x^2+2x-1}{\left(x+1\right)^2}
b)
i) y=\frac{e^x}{x}
x=0, y=0
\frac{e^x}{x}, min (1, e)
3 Evaluate these integrat correct to 3
i)
\int _o^{in\:2}\:\left(e^{2x}-1\right)dx
\int _o^{in\cdot \:2}e^{2x}-1dx
\frac{1}{2}\left(e^{4ni}-e^{2o}\right)-\left(2ni-o\right)
=\frac{1}{2}\left(e^{4ni}-e^{2o}\right)-\left(2ni-o\right)
12
chevron_up_icon
1 out of 27
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]