Mathematical Concepts: A Comprehensive Review of Core Principles

Verified

Added on  2025/04/21

|18
|1758
|77
AI Summary
Desklib provides past papers and solved assignments for students. This solved assignment covers various mathematical concepts.
Document Page
Contents
Introduction...........................................................................................................................................2
LO1........................................................................................................................................................3
Part One: Number Theory.................................................................................................................3
GCD................................................................................................................................................3
LCM..............................................................................................................................................3
Prime Numbers..............................................................................................................................4
Python Code..................................................................................................................................4
To Calculate LCM.........................................................................................................................4
Part Two: Series and Sequences........................................................................................................6
Solution: 2.1...................................................................................................................................6
Solution 2.2....................................................................................................................................6
LO2........................................................................................................................................................8
Part 1.................................................................................................................................................8
Solution 1.1....................................................................................................................................8
Solution 1.2....................................................................................................................................8
LO3......................................................................................................................................................10
Part 1...............................................................................................................................................10
Solution 3.1..................................................................................................................................10
Solution 3.2..................................................................................................................................10
Part Two: Vectors............................................................................................................................11
Solution 3.4..................................................................................................................................11
Solution 3.5..................................................................................................................................11
LO4......................................................................................................................................................13
Part One: Calculus (Differential ).....................................................................................................13
Solution 1.....................................................................................................................................13
Part 2: Calculus (Integral)................................................................................................................14
Solution 4.2.1...............................................................................................................................14
Solution 4.2.2...............................................................................................................................15
Conclusion...........................................................................................................................................17
Reference............................................................................................................................................18
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Introduction
This assignment consists of four parts. In the first part of the assignment
brief introduction of GCD, LCM and prime numbers is given. A python code
is written for the above mentioned topics and screenshot of the output is
pasted in the file, this part consist of 2 numerical are given which gives us
the understanding of number system. In the second part there are 2
subparts which explains permutation & combination. In the third part
solution are written with respect to coordinate system. In the last part
differential and integration questions are solved.
Document Page
LO1
Part One: Number Theory
GCD
GCD stands for “Greatest Common Divisor”. GFC (Greatest Common Factor) is the other
name for GCD. This is performed using at least two numbers which aren’t zero. Highest
integer which divides all other integers is GCD and it should be positive. (GCD, 2019)
For Example:
Number 1: 132
Number 2: 1260
Number 3: 2016
Solution:
Number 1: 12 * 11= 132
Number 2: 12 * 5 * 3 * 7 = 1260
Number 3: 12 * 4 * 6 * 7 = 2016
The GCD for the above numbers is 12 as it is the highest positive number which is also
divisible by all other numbers.
LCM
LCM stands for “Least Common Multiple”. In this smallest common multiple is taken in
consideration. This is calculated between two or more integer. (LCM, 2019)
For Example:
Number 1: 216
Number 2: 420
Number 3: 210
Solution:
Document Page
Number 1: 2 * 2 * 2 * 3 *3 * 3 = 216
Number 2: 2 * 2 * 3 * 5 * 7 = 420
Number 3: 2 * 3 * 5 * 7 = 210
In this the LCM is 30 as 2, 3 & 5 are common as they can divide the above number.
Prime Numbers
The factors of prime number are 1 and itself. Prime numbers have only 2 factors. For
example numbers 7, 5, 3, 2, 1 as they have only 1 and the number itself as two factors.
Python Code
To make it convenient for calculating LCM and GCD of two integer numbers a program is
created in python written below.
To Calculate LCM
def lcm(q,w):
if q < w:
smaller = w
else:
smaller = q
while(True):
if((smaller % w == 0) and (smaller % q == 0)):
lcm = smaller
break
smaller += 1
return lcm
num_1=int(input(" Enter first number: "))
num_2=int(input(" Enter Second number: "))
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
print("The L.C.M. of {} and {} is ".format(num_1,num_2),lcm(num_1,num_2))
Output
(python, 2019)
To Calculate GCD
def GCD(q, w):
if q < w:
greater = q
else:
greater = w
for i in range(1, greater+1):
if((a % i == 0) and (b % i == 0)):
gcd = i
return gcd
num_1=int(input("Enter first number"))
num_2=int(input("Enter Second number"))
print("The L.C.M. of {} and {} is ".format(num_1,num_2),GCD(num_1,num_2))
Output:
Document Page
Part Two: Series and Sequences
Solution: 2.1
Sum of natural numbers which lies between one & one thousand and are divisible by seven
can be calculated by the formula
Sn=n/2 (l+a), where Sn stands for sum of numbers,
n stands for total number,
l stands for last number divisible,
a stands for divisor.
n = 142,
l = 994,
a = 7
Sn = 142/2(994+7)
Sn = 71071
Solution 2.2
The figure below shows the bounce of the ball according to the height in centimetres.
The figure mentioned below shows the path of the ball bouncing. In this the height of
the bounce of the ball decreases with 25% of the previous bounce so the ball will
come almost to rest after 25th bounce.
Document Page
The height of the bounce after forth bounce can be calculated by:
Xn=AR(n-1) , where A stands for height of bounce,
R stands for decrement,
N stands for number of bounce.
Xn = 270 * 0.75(4-1)
Xn = 113.90625cm
Expression for nth term is Xn=AR(n-1)
Height of 15th bounce: Xn = 270 * 0.75(15-1) = 4.81020 cm
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
LO2
Part 1
Solution 1.1
Man’s probability of selection = 0.25
Women’s probability of selection = 0.33
a. Man and women selected together
0.25 * 0.33 = 0.0825
b. One of them is only selected
0.25 + 0.33 = 0.58
c. Both of them aren’t selected
1 – 0.0825 = 0.9175
Solution 1.2
Total Cards = 52 * 2 = 104
Total heart of Ace = 2
Probability of hearts of ace not drawn: (102 / 2) / (104 / 2) = 0.98
Probability of hearts of ace drawn: 1 – 0.98 = 0.02
Part 2
Solution 2.1
Coin tossed: 5 times
a. Probability (2 heads) = 5C2 / 32
= ((5 * 4 * 3 * 2 * 1) / (2 * 1)(3 * 2 * 1)) / 32
= (120/12) / 32
= 0.3125
Document Page
b. Probability of 3 heads = 5C3 / 32
= ((5 * 4 * 3 * 2 * 1) / (2 * 1) (2 * 1)) / 32
=(120/4) / 32
= 0.8823
Document Page
LO3
Part 1
Solution 3.1
Coordinate 1: (2, 5)
Coordinate 2: (6, 3)
(i) AB’s Gradient = (– Y1 + Y2) / (-X1 + X2)
= (– 5 + 3) / (– 2 + 6)
= 0.5
(ii) AB’s Length = ( (– 3 + 5)2 + (– 2 + 6)2 )0.5
= ( (3)2 + (3)2 )0.5
= 5
(iii) AB’s Midpoint: (X2+X1)/2, (Y2 + Y1)/2
(6+2)/2, (3+5)/2
8 / 2 , 8 / 2
4 , 4
(iv) AB’s Equation: m(X2 – X1) = Y2 –Y1
:: (Y2 – 5 ) = (X2 – 2 ) / 2
: 8 = -X + 2Y
Solution 3.2
Centre: ( 2, 3)
Radius: 5 units
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Radius2 = (X – H)2 + (Y – K)2
52 = (X – 2)2 + (Y – 3)2
0 = - 4X - 6Y + X2 - 12 + Y2
Part Two: Vectors
Solution 3.4
North Force is 70 N
East Force is 40 N
Resultant Force= √𝐹𝑦2 + 𝐹𝑥2
Resultant Force = √702 + 402
Resultant Force = √4900 + 1600
Resultant Force = 80.6 N
Magnitude: 𝜃 = tan – 𝑅a/𝑅b
𝜃 = tan – 70/40
𝜃 = 60.2
Solution 3.5
Force 1 = 30N
Force 2 = 40N
Document Page
Resultant Force (Y-Axis): sin60 * Ft + sin 45 *Fs
40 * sin 60 + 30 * sin 45
Resultant Force (Y-Axis): 55.8 N
cos45 * Fs – cos30 * Ft
30 * cos45 – 40 * cos 30
- 13.4 N
Combined Force: ( ( - 13.4 )2 + ( 55.8 )2 )0.5
( 179.56 + 3113.64 )0.5
( 3293.2 )0.5
57.386 N\

Direction: tan-1( -13.4 / 58.8 )
tan-1(- 0.227)
13.5
chevron_up_icon
1 out of 18
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]