Math for Computing: Differentiation and Integration Problems

Verified

Added on  2023/01/06

|9
|1699
|31
Homework Assignment
AI Summary
This document presents a comprehensive solution to a Mathematics for Computing assignment. It meticulously addresses several key mathematical concepts essential for computing. The solution begins with detailed calculations involving differentiation, including the application of the product and quotient rules to various functions. It then proceeds to integration, providing step-by-step solutions for both definite and indefinite integrals, including techniques such as substitution. Furthermore, the assignment explores graph theory, demonstrating the construction and interpretation of an adjacency matrix to represent a graph. Finally, the document includes a probability problem, calculating the likelihood of an event. The solutions are presented clearly, making this a valuable resource for students studying mathematics for computing.
Document Page
Mathematics for Computing 1
Mathematics for Computing
Student’s Name
Course
Professor’s Name
University
City (State)
Date
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Mathematics for Computing 2
Mathematics for Computing
Question 1
y= 2 x2 1
x +2
dy
dx =lim
h 0
y ( x +h ) y ( x )
h =lim
h 0
2( x +h)21
x +h+2 2 x21
x +2
h
¿ lim
h 0
2 ( x2 +2 xh+h2 ) 1
x +h+2 2 x21
x +2
h =lim
h 0
2 x2 + 4 xh+2 h21
x+h+ 2 2 x21
x +2
h
¿ lim
h 0
( x+2 ) ( 2 x2+4 xh+2 h21 ) (2 x21)(x+ h+2)
(x +h+2)( x +2)
h
¿ lim
h 0
4 x2 +8 xh+ 4 h2 +2 x3 + 4 x2 h+2 xh2x2(2 x3 +2 x2 h+4 x2 xh2)
( x+h+ 2)( x +2)
h
¿
lim
h 0
4 x2 +8 xh+ 4 h2 +2 x3 + 4 x2 h+2 xh2x22 x3 2 x2 h4 x2+ x +h+ 2¿
( x +h+2)(x +2)
h ¿
¿
lim
h 0
8 xh+4 h2+ 2 x2 h+h ¿
( x+h+2)(x +2)
h ¿=lim
h 0
h (8 x+4 h+ 2 x2+ 1)
(x+ h+2)( x+2)
h =lim
h 0
( 8 x + 4 h+2 x2+1)
( x+h+ 2)(x +2)
¿ (8 x +0+2 x2+1)
(x+ 0+2)(x+2) = 8 x +2 x2+1
( x +2 )2
dy
dx = 8 x +2 x2+1
( x +2 )2
Document Page
Mathematics for Computing 3
Question 2(i)
y=3 x ( 4 x2 +5 x3 )5
dy
dx =3 d
dx (x) ( 4 x2+5 x3 ) 5
We apply the product rule ( f . g ) ' =f ' . g+ f . g'
f =x , f '= d
dx ( x )=1 , g= ( 4 x2+5 x3 )5
, g'= d
dx ( ( 4 x2+5 x3 ) ¿¿ 5)¿
In evaluating g' , let 4 x2 +5 x3=uf =u5
df (u)
dx = df
du . du
dx
df
du =5 u4
du
dx =4 ( 2 ) x1 +5 ( 3 ) x2=8 x +15 x2
df (u)
dx =g '=5 u4 ( 8 x+15 x2 )=5 ( 4 x2+5 x3 )4
( 8 x +15 x2 )
f ' . g+f . g' =1 ( 4 x2 +5 x3 )
5
+ 5 x ( 4 x2 +5 x3 ) 4
( 8 x+ 15 x2 )
¿ ( 4 x2+5 x3 )5
+5 x ( 4 x2+5 x3 )4
( 8 x +15 x2 )
dy
dx =3 ( ( 4 x2+5 x3 )5
+5 x ( 4 x2+ 5 x3 )4
( 8 x +15 x2 ) )
Question 2(ii)
y=sin (2 x ) cos(3 x2)
Document Page
Mathematics for Computing 4
We apply the product rule ( f . g ) ' =f ' . g+ f . g'
f =sin ( 2 x ) , f '= d
dx ( sin ( 2 x ) ) =2cos ( 2 x )
g=cos ( 3 x2 ) , g'= d
dx cos ( 3 x2 )=6 xsin ( 3 x2 )
( f . g ) ' =f ' . g+ f . g' =2 cos ( 2 x ) cos ( 3 x2 ) +(sin ( 2 x ) ¿) ( 6 xsin ( 3 x2 ) ) ¿
¿ 2 cos ( 2 x ) cos (3 x2 )6 xsin ( 3 x2 ) ¿ ¿
Question 2(iii)
y=4 x2 log5 (3 x)
but log5 (3 x)= ln 3 x
ln5
y=4 x2 log5 (3 x)=4 x2 ln 3 x
ln 5 = 4
ln 5 x
2
ln(3 x)
dy
dx = 4
ln 5
d
dx x2 ln (3 x )
In evaluating d
dx x2 ln(3 x ),we apply the product rule ( f . g )' =f ' . g+ f . g'
f =x2 , f '=2 x
g=ln ( 3 x ) , g' = 1
x
f ' . g+f . g' =2 x ln ( 3 x ) + x2 . 1
x =2 xln ( 3 x )+ x
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Mathematics for Computing 5
dy
dx = 4
ln5
d
dx x2 ln(3 x )= 4
ln 5 ( 2 xln ( 3 x ) + x )
dy
dx = 4
ln 5 ( 2 xln ( 3 x )+ x )
Question 2(iv)
y= 2 x3
tan(2 x )
dy
dx =2 d
dx
x3
tan (2 x )
Using the quotient rule , d
dx
x3
tan(2 x)=tan(2 x ) d
dx
( x ¿¿ 3)x3 d
dx tan ( 2 x )
tan2 (2 x) ¿
¿ 3 x2 tan(2 x) x22 x3 sec2 ( 2 x )
tan2 (2 x)
Question 3(i)
2 ( x2 +4 x1 +2 x2 ) dx=2 ( x2 + 4 x1+ 2 x2 ) dx
¿ 2 x2 dx +2(4 ) 1
x dx +2(2) x2 dx
¿ 2 x2+1
2+1 +8 ln ( x )+ 4 x2+1
2+1 +C
¿ 2
3 x3+ 8 ln ( x )4 x1+C
Question 3(ii)
x2 cos ( 2 x ) dx
Document Page
Mathematics for Computing 6
udv=uv vdu
Let x2=u , du=2 xdxdv=cos (2 x) so that:
v= dv=¿ 1
2 sin (2 x )¿
uv vdu=x2 . 1
2 sin ( 2 x ) 1
2 sin ( 2 x ) 2 xdx= 1
2 x2 sin ( 2 x ) x sin ( 2 x ) dx
In evaluating x sin ( 2 x ) dx:
Let x=u , du=dxdv =sin (2 x) so that:
v= dv=¿ 1
2 cos (2 x)¿
uv vdu=x (1
2 cos ( 2 x ) ) 1
2 cos ( 2 x ) dx =1
2 xcos ( 2 x ) + 1
2 ( 1
2 )sin ( 2 x )
x sin ( 2 x ) dx=1
2 xcos ( 2 x )+ 1
4 sin ( 2 x )
x2 cos ( 2 x ) dx= 1
2 x2 sin ( 2 x )(1
2 xcos ( 2 x ) + 1
4 sin ( 2 x ) )
¿ 1
2 x2 sin ( 2 x ) + 1
2 xcos (2 x ) 1
4 sin ( 2 x )
Question 3(iii)
cos ( 2 x ) dx
let 2 x=u ,du=2 dx ,dx =1
2 du
Document Page
Mathematics for Computing 7
cos ( 2 x ) dx=cos ( u ) . 1
2 du
¿ 1
2 cos ( u ) du=1
2 sin (u ) +C=1
2 sin ( 2 x ) +C
Question 3(iv)

x=2
x=5
6 x3+ 7 x2 +6 x +2
x +2 dx
6 x3 +7 x2 +6 x+ 2
x +2 =3 x2 + 4 x2 +6 x+21
2 x +1
¿ 3 x2+2 x + 4 x +2
2 x +1
¿ 3 x2+2 x +2

x=2
x=5
6 x3+ 7 x2 +6 x +2
x +2 dx=
x=2
x=5
(3 x2 +2 x +2¿) dx ¿
(3 x2 +2 x+ 2)dx= 3 x2 +1
2+1 + 2 x1+1
1+1 +2 x =x3 + x2 +2 x

x=2
x=5
(3 x2+2 x +2¿)dx=x3 + x2 +2 x ¿x=2
x=5 ¿
¿ ( (5)3+(5)2+ 2(5))(2¿¿ 3+22 +2(2))¿
¿ ( 125+25+10 ) ( 8+ 4+4 ) =16016
¿ 144
Question 4
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Mathematics for Computing 8
P ( Hitting nucleus ) =0.01%
P ( sensing<5 neutrons )=0.01% ×4
¿ 0.04 %=0.0004
Question 5
A B C D E F
A 0 2 0 1 1 1
B 2 0 0 1 0 0
C 0 0 1 1 1 0
D 1 1 1 2 0 0
E 1 0 1 0 0 1
F 1 0 0 0 1 0
The graph for the adjacency matrix is shown below.
Document Page
Mathematics for Computing 9
chevron_up_icon
1 out of 9
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]