Mechanical Engineering Statics Problems: Assignment Solution

Verified

Added on  2022/08/12

|9
|700
|24
Homework Assignment
AI Summary
This document presents a comprehensive solution to a mechanical engineering assignment, focusing on statics problems. It meticulously solves various fundamental problems, including calculations of moment vectors, resultant forces, and the application of Varignon's theorem. The solutions involve detailed step-by-step calculations, vector analysis, and equilibrium conditions, providing a clear understanding of the underlying principles. Furthermore, the document addresses problems related to force application points and the determination of resultant force locations. The assignment covers a range of topics within statics, making it a valuable resource for students studying mechanical engineering and related fields. References to relevant research papers are also included, enhancing the academic rigor of the solutions.
Document Page
MECHANICAL ENGINEERING 1
MECHANICAL ENGINEERING
By Name
Course
Instructor
Institution
Location
Date
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
MECHANICAL ENGINEERING 2
Fundamental Problem 4.23 - Enhanced - with Hints and Feedback
The coordinate of point 0, ( x0,y0,z0) = (0,0,0) ft
The coordinate of point A, ( xA, yA,ZA) = ( -2,2.3.5) ft
The coordinate of B, ( xB,yB,zB) = ( 1.5, -2,0) ft
The unit vector eoA is
eoA = ( xAx 0 ) i+¿ ¿
eoA= ( 20 ) i+¿ ¿
eoA= 2i+2 j+3.5 k
20 .25
eoA= 1.5i2 j+ ok
4 .5
eoA= -0.444i+0.444j+0.777k
The unit vector eoB is
eoB = ( xAx 0 ) i+¿ ¿
eoB= ( 1.50 ) i+¿ ¿
eoB= 1.5i2 j+ ok
6.25
eoB= 1.5i2 j+ ok
2.5
eoB= 0.6i-0.8j
The momemnt vector ( Mc)1 is
(Mc)1= -0.444i+0.444j+0.777k
The magnitude (Mc)1=540 (-0.444i+0.444j+0.777k )
Document Page
MECHANICAL ENGINEERING 3
The magnitude (Mc)1= -239.7i + 239.7j+ 419.58k.
Moment vector (Mc)2 is
= 300 (0.6i-0.8j)
= 180i -240j ( lb. ft)
Moment vector (Mc)3 is
(Mc)3 = - (Mc)3k
(Mc)3 =-300k (lb.ft)
The negative sign is because of which the ( Mc) 3 acting in negative z direction
The resultant coule moment acting on pipe is
(Mc)R= ( Mc)1+(Mc)2+ ( Mc) 3
( Mc)R = (-239.7i + 239.7j+ 419.58k) + (180i -240j) -300k
( Mc)R = (59.7i-0.3j+119.58k ) l.b ft
Fundamental Problem 4.40
Part A
From the diagram below
Document Page
MECHANICAL ENGINEERING 4
Obtain the resultant force
FR= {150 lb
ft ×6 ft }+ {1
2 ×50 lb
ft ×6 ft }+600 lb
FR= 1650 lb
Part B
From the Varignon´s theorem , we can obtain the location of the resultant force from point A
FR (d)= {150 lb
ft ×6 ft }(3 ft )+ {1
2 × 50 lb
ft ×6 ft }(2
3 ×6 ft)+(600 lb)(9 ft)
FR(d) =8700 lb-ft
d= 8700
FR = 8700
1650
d= 5.27
Fundamental Problem 4.3
Calculate the distance between the point of application of the force and point o
r= 4+( 3 cos 450-1)
r= (4+1.121)ft
r= 5.121 ft
Obtain the moment of force about point O
Mo= Fr
Mo= 670×5.121
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
MECHANICAL ENGINEERING 5
Mo= 3431.07 lb . ft
Mo= 3.43 kip.ft
Fundamental Problem 4.29
Part A
(FR)0 = F1+F2
= ¿
=(280 i+180 j230 k )
=(280 , 180 ,230 k )
Part B
(Mo) R = M1+M2
M1 = F1×roe
M1= | i j k
1.5 2 1
280 180 220|
= i(440-180-j( -330+280) + k(-270 +560)
= ( 260i +50j+290k )
M2 = |i j k
0 2 1
0 0 450|= -900i
(Mo)R= ( 260i +50j+290k ) -900i
(Mo)R = -640i +50j+290k
(Mo)R = (-640, 50, 290)
Fundamental Problem 4.25
Document Page
MECHANICAL ENGINEERING 6
FRx = 230-110( 3
5 ¿=164 lb
FRy= 170-110 ¿)= 82 lb
Part A
FR=¿ ¿
FR=¿ ¿
FR= 183.357 lb
Part B
Tan θ= FRy
FRx
θ=tan1( FRy
FRx )
θ=tan1( 82
164 )
θ=26.56 00
Part C
MA
MA = 110( 3
5 ¿ ( 4 )110 ( 4
5 ) ( 6 )+ 170(3)
MA = 246lb.ft
Fundamental Problem 4.37
Part B
RA+RB = ( 6×4.5)+( 9×9)+(3×4.5)
RA+RB= 121.5 = F
Document Page
MECHANICAL ENGINEERING 7
M =0; F ×d=27× 0+81 ×6.75+13.5 ×13.5
F ×d=729
d= 729
121.5 =6
The distance between the A and resultant line of action
d=6-2.25
d= 3.75 m
Fundamental Problem 4.33
Fx=0
Rx+F2 ( 4
5 ¿= 0
Rx+16 ( 4
5 ¿=0
Rx= -12.8 kN
Apply equilibrium condition for forces along y direction
Fy=0
Ry+R2( 3
5 )=F 1
Ry+16( 3
5 )=20
Ry= 10.4 kN
Calculate the magnitude of resultant force
R ¿ Rx2 + Ry2
R ¿ (12.8)2 +10.42
R=16.49
Part B
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
MECHANICAL ENGINEERING 8
θ=ta n1
( Ry
Rx )
θ=tan1
( 10.4
12.8 )
θ=0.8125
θ=39.093
θ=18039.093
θ=140.91
Part C
Apply the equilibrium condition for moments about point A.
MA =0
F2 ( 3
5 ) ( 6 ) +R ¿
16 × ( 3
5 ) ( 6 ) +16.49 ¿
9. 6+10.397d- 25.6-40=0
10.39d= 16
d= 1.539
Fundamental Problem 4.31
F =0
Fy=?
Document Page
MECHANICAL ENGINEERING 9
R= ¿ ¿
R= ¿ ¿
R= Fy
R=600+300+600
R= 1500lb
Reference
Kosteski, L., Iturrioz, I., Batista, R.G. and Cisilino, A.P., 2011. The trusslike discrete element method in
fracture and damage mechanics. Engineering Computations.
Mazurek, A., 2012. Geometrical aspects of optimum truss like structures for three-force
problem. Structural and Multidisciplinary Optimization, 45(1), pp.21-32.
Morterolle, S., Maurin, B., Quirant, J. and Dupuy, C., 2012. Numerical form-finding of geotensoid tension
truss for mesh reflector. Acta Astronautica, 76, pp.154-163.
Yang, Y., Moen, C.D. and Guest, J.K., 2015. Three-dimensional force flow paths and reinforcement
design in concrete via stress-dependent truss-continuum topology optimization. Journal of Engineering
Mechanics, 141(1), p.04014106.
chevron_up_icon
1 out of 9
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]