Mechanical Vibrations Assignment Solution, Semester 1, University Name

Verified

Added on  2022/08/12

|16
|381
|25
Homework Assignment
AI Summary
This assignment solution covers several key topics in mechanical vibrations. It begins by analyzing forces and solving equations of motion, then proceeds to calculate natural and damped frequencies for rigid frames. The solution further delves into the application of Laplace transforms and the derivation of particular solutions for specific forcing functions. It also examines the dynamics of a system with a spring, damper, and mass, providing a detailed breakdown of the forces involved and the resulting equations of motion. Finally, the assignment explores the behavior of a system involving a pendulum and a mass, deriving the natural frequencies and solving for constants within the system. The solution includes a bibliography citing relevant sources for further study.
Document Page
1
Mechanical Vibrations
Student’s Name
Institutional Affiliation
Date
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
2
Question 1
a)
b)
Force acting at A,
Fa=Ka x
Force acting at B,
Fb=Kb x
Force acting at D
Fd=C ˙x
a=m ¨x
Summing the forces,
Document Page
3
Fd +Fb=Fa
m ¨x +C ˙x +Kb x=Ka x
m ¨x +C ˙x + Kb xKa x=0
m ¨x +C ˙x + ( K bKa ) x=0
10 ¨x+ 200 ˙x + ( 15053 ) x=0
10 ¨x+ 200 ˙x +97 x=0
c)
T =Io ¨θ
a Fab FbL Fd=I o ¨θ
Ka a ( ya ) Kb a ( yb ) bCL ( ˙yd )= ( mL2 ) ¨θ
Where,
I o=mk2=mL2
ya=
yb=
yd =
Ka a2 θKb b2 θC L2 ˙θ=mL2 ¨θ
mL2 ¨θ+C L2 ˙θ+ ( Ka a2 + Kb b2 ) θ=0
Substituting the given values we have,
10( 0.3)2 ¨θ+200(0.3)2 ˙θ+ (53( 0.2)2 +150(0.1)2 ) θ=0
0.9 ¨θ+18 ˙θ+3.62 θ=0
d)
Solving the equation of motion,
0.9 ¨θ+18 ˙θ+3.62 θ=0
θ=b ± b2 4 ac
2 a , a=0.9, b=18 , c=3.62
θ=18 ± 1824 (0.9)(3.62)
1.8
Document Page
4
θ=18 ± 32413.032
1.8
θ=18 ± 17.63
1.8
θ=19.790.21
Solution,
θ ( t )=c1 e19.79t +c2 e0.21 t
θ ( 0 ) =c1+ c2=15
˙θ ( t )=19.79 c1 e19.79 t 0.21 c2 e0.21 t
˙θ ( 0 ) =19.79 c10.21 c2=0
19.79 c1 +0.21 c2=0
c2=94.24 c1
From,
c1 +c2=15
c1 +94.24 c1=15
95.24 c1 =15
c1=0.1575
c2=94.24 ( 0.1575 ) =14.8428
θ ( t ) =0.1575 e19.79 t +14.8428 e0.21 t
Question 2
i.
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
5
For the rigid frame,
2 Kx=Kx
2 KxKx=0
( 2 KK ) x=0
For the mass
m ( ¨x + ¨y ) +C ˙x +Kx+ 2 Kx=0
m ¨x +m ¨y +C ˙x+ ( K +2 K ) x=0
ii.
undamped natural frequency
ω0= K
m = 40
1 =6.324 rad
s
f = ω0
2 π = 6.324
2 π =1.006 Hz
ωn=ω0 1ξ2
ξ= c
2 mk = 6
2 1(40)=0.4743
Damped natural frequency
ωn=6.324 10.47432=5.5674 rad
s
iii.
m ¨x +m ¨y +C ˙x+ ( K +2 K ) x=0
Document Page
6
Substituting the givem values we have,
¨x + ¨y +6 ˙x+ ( 40+80 ) x=0
¨x + ¨y +6 ˙x+120 x=0
¨x +6 ˙x+120 x= ¨y
y (t )= y0 sin wf t
y (t )=0.02 sin15 t
˙y ( t ) =0.3 cos 15 t
¨y ( t ) =4.5 sin 15 t
¨x (t ) +6 ˙x (t ) +120 x ( t )=4.5 sin15 t 1
This has a particular solution of the form,
x p ( t ) = X1 sin 15 t+ X2 cos 15t
˙x p ( t ) =15 X1 cos 15 t 15 X2 sin 15t
¨x p ( t ) =225 X1 sin 15 t225 X1 cos 15 t
Substituting in equation 1,
¿225 X1 sin 15 t225 X1 cos 15 t+6 (X1 cos 15 tX2 sin 15t )+ 120(X1 sin 15t +X2 cos 15 t)=4.5 sin 15 t
Collecting like terms we have,
225 X1 sin 15t225 X1 cos 15 t +6 X1 cos 15 t6 X2 sin15 t +120 X1 sin 15 t+120 X2 cos 15 t +4.5 sin 15 t=0
( 225 X 16 X2 +120 X1 +4.5 ) sin 15 t+ (225 X1 +6 X1 +120 X2 ) cos 15 t=0
Solving for X1 and X2
(225 X 16 X2 +120 X1 +4.5 ) =0
(225 X 1+6 X1+120 X 2 ) =0
219 X1 +120 X2=0
120 X2=219 X 1
X2 =1.825 X1
225 X16 X2+ 120 X1+ 4.5=0
105 X16 X2=4.5
105 X16 (1.825 X1)=4.5
105 X110.95 X1 =4.5
Document Page
7
115.95 X1=4.5
X1 =0.0388
X2 =1.825 X1= ( 1.825 ) ( 0.0388 )=0.07081
Therefore,
x p (t )= X1 sin 15 t+ X2 cos 15t
x p ( t ) =0.0388sin 15 t+ 0.07081cos 15t
iv.
¨x (t ) +6 ˙x (t ) +120 x ( t )=4.5 sin15 t
Taking Laplace transforms on both sides of the equation we have,
s2 X ( s ) +6 sX ( s ) +120 X ( s ) = L { 4.5sin 15 t }
Laplace transform of sin ( at )= a
s2 +a2 , therefore,
L { 4.5 sin 15 t }=4.5 a
s2+a2 , a=15
¿ 4.5 15
s2 +152 = 67.5
s2 +225
s2 X ( s ) +6 sX ( s ) +120 X ( s )= 67.5
s2 +225 =Y ( s)
X ( s )
Y (s )= (s2+ 6 s +120)
67.5
s2+ 225
= ( s2 +6 s+120 ) (s2+ 225)
67.5
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
8
Question 3
1.
Taking moments about point O we have, for the mass,
¿ mb ¨θ ×b
For the spring 1,
K1 ×b
For the damper,
Cb ˙θ× b
For spring 2,
K2 ×a
The net moment becomes,
m b2 ¨θ +C b2 ˙θ+ ( K 1 b2+ K 2 a2 ) θ=0
¨θ+ C
m ˙θ+ ( K 1 b2+ K2 a2
mb2 ) θ=0
¨θ+ 6
3 ˙θ +
( (39) 0.52 +( 100)0.32
(3) 0.52 ) θ=0
¨θ+2 ˙θ+25 θ=0
2.
General solution,
Let,
˙θ=
Document Page
9
¨θ=D2 θ
¨θ+2 ˙θ+25 θ=0
D2 θ+2 +25 θ=0
Solving for D we have,
D=2 ± 4100
2 =2± 96
2
D=1± j 96
2
D=1± 42 6
2
D=1± j 8 6
The general solution becomes,
θg ( t ) =et [ Acos 8 6 t+ Bsin8 6 t ]
3.
Particular solution
F=10 δ (t2)
D2 θ+2 +25 θ=F=10 δ(t2)
[ D¿¿ 2+ 2 D+25 ]θ=F=10 δ (t2) ¿
¿ 10 δ(t 2)
D2+2 D+25 = 10 δt
D2 +2 D+ 25 20 δ
D2 +2 D+25
¿ 10 δt
25 [1+ 2 D
25 + D2
25 ] 20 δ
02+ 2(0)+25
X p =10 δ
25 [ 1+ 2 D
25 + D2
25 ]
1
t 20 δ
25
4.
The total solution then becomes,
Xtotal =et [ Acos 8 6 t +Bsin 8 6 t ] + 10 δ
25 [ 1+ 2 D
25 + D2
25 ]
1
t 20 δ
25
Document Page
10
Question 4
F(t)
Kx m ¨x C ˙x
F ( t ) =m ¨x+C ˙x+Kx
Substituting the given coefficients we have,
F ( t ) = ¨x +12 ˙x +144 x
i)
The function F(t) can be defined as,
F ( t )= { t
π ,0< t< π
1 ,π <t< 2 π
f ( x )= 1
2 a0 +
n=1

{an cosnx+ bn sinx }
a0= 1
π
0
2 π
f ( t ) dt= 1
π {
0
π
1
π tdt +
π
2 π
dx }
¿ 1
π {[ t2
2 π ]0
π
+ [ t ] π
2 π
}
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
11
1
π { π
2 +2 ππ }= 1
π {3 π
2 }= 3
2
an= 1
π
0
2 π
f ( t ) cosntdt = 1
π {
0
π
t
π cosntdt +
π
2 π
cosntdt }
¿ 1
π { 1
π [ tsinnt
n ]0
π
1
πn
0
π
sinntdt+
π
2 π
cosntdt }
an= 1
π { 1
π ( 00 ) 1
πn [cosnt
n ]0
π
+ [ sinnt
n ]π
2 π
}
1
π { 1
π n2 ( (1 )n +1 )+(00) }
¿ 1
π2 n2 ¿
Therefore,
an=0( n even)
an= 2
π2 n2
Finding bn
bn= 1
π
0
2 π
f ( t ) sinntdt = 1
π {
0
π
t
π sinntdt +
π
2 π
sinntdt }
¿ 1
π { 1
π [ tcosnt
n ]0
π
+ 1
πn
0
π
cosntdt +
π
2 π
sinntdt }
¿ 1
π { 1
πn (πcosnπ ) + 1
πn [ sinnt
n ]0
π
+ [cosnt
n ]π
2 π
}
¿ 1
π {1
n cosnπ + ( 00 ) 1
n (cos 2 πncosπn)}
¿ 1
π {1
n cosnπ + ( 00 ) 1
n (cos 2 πncosπn)}
¿ 1
π {1
n cos 2 πn }=1
πn cos 2 πn
But cos 2 πn=1
bn=1
πn
Document Page
12
f ( t )= 3
2 2
π 2 {cost+ 1
9 cos 3 t + 1
25 cos 5 t+ } 1
π {sint + 1
2 sin 2 t+ 1
3 sin 3 t+ 1
4 sin 4 t }
ii)
a0= 3
2
f ( t )= 3
2 2
π 2 cost 1
π sint 1
2 π sin 2 t
F ( t )= ¨x (t)+12 ˙x (t)+144 x (t) i
The particular solution can be written as,
x p ( t ) = X1 sint + X2 cost
˙x p ( t ) = X1 costX2 sint
¨x p ( t ) =X1 sint X1 cost
Substituting x p and its derivatives into equation i ,
( X1 sint X1 cost ) +12 ( X1 cost X2 sint ) +144 ( X1 sint + X2 cost )= 3
2 2
π2 cost 1
π sint
X1 sint X1 cost +12 X1 cost12 X2 sint +144 X1 sint +144 X2 cost= 3
2 2
π2 cost 1
π sint 1
2 π sin 2 t
( X112 X2+ 144 X1 1
π ) sint + (X 1+12 X1 ++144 X 2 2
π2 ) cost= 3
2
The terms in parentheses must vanish which yields,
x p ( t ) =sint +cost 3
2
Question 5
1.
chevron_up_icon
1 out of 16
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]