ENGIN2301 Mechanics of Solids Tutorial 1: Complete Solution

Verified

Added on Β 2023/04/08

|9
|707
|426
Homework Assignment
AI Summary
This document presents a comprehensive solution to a Mechanics of Solids tutorial assignment. The solution addresses two main questions involving structural analysis. Question 1 focuses on a platform supported by a cable and a strut, requiring the calculation of reaction forces, stress in the strut, shear stress in a bolt, and bearing stresses. This involves creating a free body diagram and applying equilibrium equations. Question 2 involves the analysis of a component supporting part of a machine. The solution includes calculations of resultant forces, shear stresses, and bearing stresses in various components. The document provides detailed step-by-step solutions, including calculations for stress, shear, bearing stress, and deflection, making it a valuable resource for students studying mechanics of solids. The assignment covers topics such as stress, shear, bearing stress, and deflection, including calculations for different components and scenarios.
Document Page
Running Head: MECHANICS OF SOLIDS 1
MECHANICS OF SOLIDS
Student’s Name
Professor
Date
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
MECHANICS OF SOLIDS 2
Mechanics of Solids
Question 1
Free body diagram of figure 1.
RD
420 k N
300
RB RA
0.96 mm 0.09mm 1.05 mm
RD sin 30 – 420 + RB- RA………………………………………………. (i)
Moment at A.
RD sin 30(2.1) + RB (1.14)- 420(1.05)
2.1 RD sin 30 + 1.14(420+RA- RD sin 30) – 441= 0
2.1 RD sin 30 + 478.8 +1.14 RA- 1.14 RD sin 30-441=0
0.96 * 50 sin 30 + 37.8 +1.14 RA=0
RA = -54.21 k N
Substuting RA in equation (i)
2.1 RD sin 30 + 1.14 RB- 441= 0
RB= 420+RA -RD sin 30
RB= 340.8 k N
Document Page
MECHANICS OF SOLIDS 3
Stress in the strut BC.
πœ•= 𝐹
𝐴 == 340.8
0.2
= 1703.95 N.mm
Shear stress on bolt at A.
𝜏 = 16𝑉
3πœ‹π‘‘2
𝜏 =16 βˆ— βˆ’54.21
3πœ‹(0.05)2
𝜏 = βˆ’36.807 π‘€π‘π‘Ž
Bearing stresses on flange
3𝑉
2𝑏𝑑
3βˆ— βˆ’54.21
2βˆ—0.15βˆ—0.05 = -10.842 Mpa
Bearing stress on platform
3βˆ— βˆ’54.21
2βˆ—0.2βˆ—0.05
= -8.131 Mpa
Document Page
MECHANICS OF SOLIDS 4
Question 2
Considering Static equilibrium
(βˆ‘M) A=0
(-Fy * 504.5) +(Fx *86.4) + Ry* (815.9 + 504.5) + (Rx *531.3)
=0
(-68*5530*504.5) +(68sin30 * 86.6) + Rcos 20(1320.6) + Rsin 20* 531.3=0
68[-393.709] + R [1422.485] =0
R= 68βˆ—393.709
1422.985
R = 1822 k N
(βˆ‘Fy) =0
Ay – Fy + Ry = 0
Ay- 68cos 30 +18.82cos 20=0
Ay= 41.20 k N
(βˆ‘Fx) = 0
Ax – Fx + Rx = 0
Ax= 68sin 30-18.82sin 20
Ax= 27.56 k N
Resultant force at A.
FA= √((𝐴π‘₯)2 + ((Ay)2) = √((27.56)2 + ((41.204)2)
FA = 49.57 k N
Both bolts are under single shear
𝜏A =
𝐹𝐴
(π΄π‘Ÿπ‘’π‘Ž)𝐴
= 49.57βˆ—103
(πœ‹
4βˆ—252)𝐴
= 100.99 Mpa
𝜏B =
𝑅
(π΄π‘Ÿπ‘’π‘Ž)𝐡
= 18.82βˆ—103
(πœ‹
4βˆ—202)𝐴
= 59.
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
MECHANICS OF SOLIDS 5
Question 3 FD
Assume axis to be: W P
Y- axis FA
X – axis
βˆ‘πΉπ‘¦= 0
FA + FD = W+ P
FA + FD= 5000 N……………………………………………………(i)
Moment about A.
MA = 0
0 = W *AG cos πœƒ + P* AN cos πœƒ = FD* PD cos πœƒ
800* 0.9 + 3000 * 1.26 = FD * 1.8 FA
FD = 3100 N
From equation (i): FA = 1900 N C
Considering bar ABC:
𝛿𝐴𝐡𝐢= 𝛿𝐴𝐡+ 𝛿𝐡𝐢
πΉπ΄βˆ— 𝐿𝐴𝐡
𝐴𝐴𝐡+𝐸𝐴𝐡
+ πΉπ΄π·βˆ— 𝐿𝐡𝐢
𝐴𝐡𝐢+𝐸𝐡𝐢
𝐸𝐴𝐡= 𝐸𝑆𝑑𝑒𝑒𝑙= 210 Gpa A
𝐸𝐡𝐢= 𝐸𝐴𝑙 = 80 Gpa
FA
Document Page
MECHANICS OF SOLIDS 6
FA[ 0.2
πœ†
4βˆ—0.0152βˆ—210βˆ—109 + 0.05
πœ†
4βˆ—0.042βˆ—80βˆ— 109]
FA [ 5.389 *10βˆ’9 + 0.497 βˆ— 10βˆ’9 ]
𝛿𝐴𝐡𝐢= 1.1103 βˆ— 10βˆ’5m deflection of ABC
Considering bar DEF
FD
F
E
D
FD
𝛿𝐷𝐸𝐹= Deflection of bar DEF
𝛿𝐷𝐸𝐹= 𝛿𝐷𝐸+ 𝛿𝐡𝐹
πΉπ·βˆ— 𝐿𝐷𝐸
𝐴𝐷𝐸+𝐸𝐷𝐸
+ πΉπ·βˆ— 𝐿𝐸𝐹
𝐴𝐸𝐹+𝐸𝐸𝐹
𝐸𝐷𝐸= 𝐸𝑆𝑑𝑒𝑒𝑙= 210 Gpa
𝐸𝐸𝐹= 𝐸𝐴𝑙 = 80 Gpa
𝛿𝐷𝐸𝐹= FD*[[ 0.2
πœ†
4βˆ—0.0152βˆ—210βˆ—109 + 0.05
πœ†
4βˆ—0.042βˆ—80βˆ— 109]
𝛿𝐷𝐸𝐹= 1.824 βˆ— 10βˆ’5m
Document Page
MECHANICS OF SOLIDS 7
Question 4
Strut at BC is 40mm
120 k N.mm
B C
120 k N.mm
120 mm
Gbi =120 Gpa
From CD is
30
C D
210 k N.mm
150 mm
GCD= 60 Gpa
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
MECHANICS OF SOLIDS 8
330 30 50
150 mm
GAB = 80 Gpa
Shear stress in BC
΀𝐡𝐢
𝜏𝐡𝐢
= 𝜏𝐡𝐢
𝑅
120
πœ‹βˆ—404
32 βˆ—1612 = 𝜏𝐡𝐢
20βˆ—10βˆ’3 𝜏𝐡𝐢= 9.6 π‘€π‘π‘Ž
Shear stress in CD
΀𝐢𝐷
𝜏𝐢𝐷
= 𝜏𝐢𝐷
𝑅
240
πœ‹βˆ—(304βˆ’204)
32 βˆ—16βˆ’12
= 𝜏𝐢𝐷
15βˆ—10βˆ’3 𝜏𝐢𝐷= 56.41 π‘€π‘π‘Ž
Shear stress in AB
΀𝐴𝐡
𝜏𝐴𝐡
= 𝜏𝐴𝐡
𝑅
720
πœ‹βˆ—(504βˆ’304)
32 βˆ—10βˆ’12
= 𝜏𝐴𝐡
25βˆ—10βˆ’3 𝜏𝐴𝐡= 33.703π‘€π‘π‘Ž
Angle of twist
πœƒπ·π΄= πœƒπ·πΆ + πœƒπΆπ΅ + πœƒπ΅π΄
Document Page
MECHANICS OF SOLIDS 9
πœƒπ·π΄= Ξ€πΆπ·βˆ—πΏπΆπ·
πΊπΆπ·βˆ—πœπΆπ·
+ Ξ€πΆπ΅βˆ—π‘™πΆπ΅
πΊπΆπ΅βˆ—πœπΆπ΅
+Ξ€π΅π΄βˆ—πΏπ΅π΄
πΊπ΄π΅βˆ—πœπ΄π΅
πœƒπ·π΄= ( 240βˆ—0.15
60βˆ— (304βˆ’204) + 120βˆ—0.12
120βˆ—404 + 720βˆ—0.15
80βˆ—(504βˆ’304)) 32
πœ‹βˆ— 10βˆ’3
πœƒπ·π΄= 0.0124 πœ‹π‘Žπ‘‘
πœƒπ·π΄= 0.7 degrees
chevron_up_icon
1 out of 9
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]