ENGIN2301 Mechanics of Solids Tutorial 1: Complete Solution
VerifiedAdded on 2023/04/08
|9
|707
|426
Homework Assignment
AI Summary
This document presents a comprehensive solution to a Mechanics of Solids tutorial assignment. The solution addresses two main questions involving structural analysis. Question 1 focuses on a platform supported by a cable and a strut, requiring the calculation of reaction forces, stress in the st...

Running Head: MECHANICS OF SOLIDS 1
MECHANICS OF SOLIDS
Studentβs Name
Professor
Date
MECHANICS OF SOLIDS
Studentβs Name
Professor
Date
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.

MECHANICS OF SOLIDS 2
Mechanics of Solids
Question 1
Free body diagram of figure 1.
RD
420 k N
300
RB RA
0.96 mm 0.09mm 1.05 mm
RD sin 30 β 420 + RB- RAβ¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦. (i)
Moment at A.
RD sin 30(2.1) + RB (1.14)- 420(1.05)
2.1 RD sin 30 + 1.14(420+RA- RD sin 30) β 441= 0
2.1 RD sin 30 + 478.8 +1.14 RA- 1.14 RD sin 30-441=0
0.96 * 50 sin 30 + 37.8 +1.14 RA=0
RA = -54.21 k N
Substuting RA in equation (i)
2.1 RD sin 30 + 1.14 RB- 441= 0
RB= 420+RA -RD sin 30
RB= 340.8 k N
Mechanics of Solids
Question 1
Free body diagram of figure 1.
RD
420 k N
300
RB RA
0.96 mm 0.09mm 1.05 mm
RD sin 30 β 420 + RB- RAβ¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦. (i)
Moment at A.
RD sin 30(2.1) + RB (1.14)- 420(1.05)
2.1 RD sin 30 + 1.14(420+RA- RD sin 30) β 441= 0
2.1 RD sin 30 + 478.8 +1.14 RA- 1.14 RD sin 30-441=0
0.96 * 50 sin 30 + 37.8 +1.14 RA=0
RA = -54.21 k N
Substuting RA in equation (i)
2.1 RD sin 30 + 1.14 RB- 441= 0
RB= 420+RA -RD sin 30
RB= 340.8 k N

MECHANICS OF SOLIDS 3
Stress in the strut BC.
π= πΉ
π΄ == 340.8
0.2
= 1703.95 N.mm
Shear stress on bolt at A.
π = 16π
3ππ2
π =16 β β54.21
3π(0.05)2
π = β36.807 πππ
Bearing stresses on flange
3π
2ππ
3β β54.21
2β0.15β0.05 = -10.842 Mpa
Bearing stress on platform
3β β54.21
2β0.2β0.05
= -8.131 Mpa
Stress in the strut BC.
π= πΉ
π΄ == 340.8
0.2
= 1703.95 N.mm
Shear stress on bolt at A.
π = 16π
3ππ2
π =16 β β54.21
3π(0.05)2
π = β36.807 πππ
Bearing stresses on flange
3π
2ππ
3β β54.21
2β0.15β0.05 = -10.842 Mpa
Bearing stress on platform
3β β54.21
2β0.2β0.05
= -8.131 Mpa

MECHANICS OF SOLIDS 4
Question 2
Considering Static equilibrium
(βM) A=0
(-Fy * 504.5) +(Fx *86.4) + Ry* (815.9 + 504.5) + (Rx *531.3)
=0
(-68*5530*504.5) +(68sin30 * 86.6) + Rcos 20(1320.6) + Rsin 20* 531.3=0
68[-393.709] + R [1422.485] =0
R= 68β393.709
1422.985
R = 1822 k N
(βFy) =0
Ay β Fy + Ry = 0
Ay- 68cos 30 +18.82cos 20=0
Ay= 41.20 k N
(βFx) = 0
Ax β Fx + Rx = 0
Ax= 68sin 30-18.82sin 20
Ax= 27.56 k N
Resultant force at A.
FA= β((π΄π₯)2 + ((Ay)2) = β((27.56)2 + ((41.204)2)
FA = 49.57 k N
Both bolts are under single shear
πA =
πΉπ΄
(π΄πππ)π΄
= 49.57β103
(π
4β252)π΄
= 100.99 Mpa
πB =
π
(π΄πππ)π΅
= 18.82β103
(π
4β202)π΄
= 59.
Question 2
Considering Static equilibrium
(βM) A=0
(-Fy * 504.5) +(Fx *86.4) + Ry* (815.9 + 504.5) + (Rx *531.3)
=0
(-68*5530*504.5) +(68sin30 * 86.6) + Rcos 20(1320.6) + Rsin 20* 531.3=0
68[-393.709] + R [1422.485] =0
R= 68β393.709
1422.985
R = 1822 k N
(βFy) =0
Ay β Fy + Ry = 0
Ay- 68cos 30 +18.82cos 20=0
Ay= 41.20 k N
(βFx) = 0
Ax β Fx + Rx = 0
Ax= 68sin 30-18.82sin 20
Ax= 27.56 k N
Resultant force at A.
FA= β((π΄π₯)2 + ((Ay)2) = β((27.56)2 + ((41.204)2)
FA = 49.57 k N
Both bolts are under single shear
πA =
πΉπ΄
(π΄πππ)π΄
= 49.57β103
(π
4β252)π΄
= 100.99 Mpa
πB =
π
(π΄πππ)π΅
= 18.82β103
(π
4β202)π΄
= 59.
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.

MECHANICS OF SOLIDS 5
Question 3 FD
Assume axis to be: W P
Y- axis FA
X β axis
βπΉπ¦= 0
FA + FD = W+ P
FA + FD= 5000 Nβ¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦(i)
Moment about A.
MA = 0
0 = W *AG cos π + P* AN cos π = FD* PD cos π
800* 0.9 + 3000 * 1.26 = FD * 1.8 FA
FD = 3100 N
From equation (i): FA = 1900 N C
Considering bar ABC:
πΏπ΄π΅πΆ= πΏπ΄π΅+ πΏπ΅πΆ
πΉπ΄β πΏπ΄π΅
π΄π΄π΅+πΈπ΄π΅
+ πΉπ΄π·β πΏπ΅πΆ
π΄π΅πΆ+πΈπ΅πΆ
πΈπ΄π΅= πΈππ‘πππ= 210 Gpa A
πΈπ΅πΆ= πΈπ΄π = 80 Gpa
FA
Question 3 FD
Assume axis to be: W P
Y- axis FA
X β axis
βπΉπ¦= 0
FA + FD = W+ P
FA + FD= 5000 Nβ¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦(i)
Moment about A.
MA = 0
0 = W *AG cos π + P* AN cos π = FD* PD cos π
800* 0.9 + 3000 * 1.26 = FD * 1.8 FA
FD = 3100 N
From equation (i): FA = 1900 N C
Considering bar ABC:
πΏπ΄π΅πΆ= πΏπ΄π΅+ πΏπ΅πΆ
πΉπ΄β πΏπ΄π΅
π΄π΄π΅+πΈπ΄π΅
+ πΉπ΄π·β πΏπ΅πΆ
π΄π΅πΆ+πΈπ΅πΆ
πΈπ΄π΅= πΈππ‘πππ= 210 Gpa A
πΈπ΅πΆ= πΈπ΄π = 80 Gpa
FA

MECHANICS OF SOLIDS 6
FA[ 0.2
π
4β0.0152β210β109 + 0.05
π
4β0.042β80β 109]
FA [ 5.389 *10β9 + 0.497 β 10β9 ]
πΏπ΄π΅πΆ= 1.1103 β 10β5m deflection of ABC
Considering bar DEF
FD
F
E
D
FD
πΏπ·πΈπΉ= Deflection of bar DEF
πΏπ·πΈπΉ= πΏπ·πΈ+ πΏπ΅πΉ
πΉπ·β πΏπ·πΈ
π΄π·πΈ+πΈπ·πΈ
+ πΉπ·β πΏπΈπΉ
π΄πΈπΉ+πΈπΈπΉ
πΈπ·πΈ= πΈππ‘πππ= 210 Gpa
πΈπΈπΉ= πΈπ΄π = 80 Gpa
πΏπ·πΈπΉ= FD*[[ 0.2
π
4β0.0152β210β109 + 0.05
π
4β0.042β80β 109]
πΏπ·πΈπΉ= 1.824 β 10β5m
FA[ 0.2
π
4β0.0152β210β109 + 0.05
π
4β0.042β80β 109]
FA [ 5.389 *10β9 + 0.497 β 10β9 ]
πΏπ΄π΅πΆ= 1.1103 β 10β5m deflection of ABC
Considering bar DEF
FD
F
E
D
FD
πΏπ·πΈπΉ= Deflection of bar DEF
πΏπ·πΈπΉ= πΏπ·πΈ+ πΏπ΅πΉ
πΉπ·β πΏπ·πΈ
π΄π·πΈ+πΈπ·πΈ
+ πΉπ·β πΏπΈπΉ
π΄πΈπΉ+πΈπΈπΉ
πΈπ·πΈ= πΈππ‘πππ= 210 Gpa
πΈπΈπΉ= πΈπ΄π = 80 Gpa
πΏπ·πΈπΉ= FD*[[ 0.2
π
4β0.0152β210β109 + 0.05
π
4β0.042β80β 109]
πΏπ·πΈπΉ= 1.824 β 10β5m

MECHANICS OF SOLIDS 7
Question 4
Strut at BC is 40mm
120 k N.mm
B C
120 k N.mm
120 mm
Gbi =120 Gpa
From CD is
30
C D
210 k N.mm
150 mm
GCD= 60 Gpa
Question 4
Strut at BC is 40mm
120 k N.mm
B C
120 k N.mm
120 mm
Gbi =120 Gpa
From CD is
30
C D
210 k N.mm
150 mm
GCD= 60 Gpa
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

MECHANICS OF SOLIDS 8
330 30 50
150 mm
GAB = 80 Gpa
Shear stress in BC
Ξ€π΅πΆ
ππ΅πΆ
= ππ΅πΆ
π
120
πβ404
32 β1612 = ππ΅πΆ
20β10β3 ππ΅πΆ= 9.6 πππ
Shear stress in CD
Ξ€πΆπ·
ππΆπ·
= ππΆπ·
π
240
πβ(304β204)
32 β16β12
= ππΆπ·
15β10β3 ππΆπ·= 56.41 πππ
Shear stress in AB
Ξ€π΄π΅
ππ΄π΅
= ππ΄π΅
π
720
πβ(504β304)
32 β10β12
= ππ΄π΅
25β10β3 ππ΄π΅= 33.703πππ
Angle of twist
ππ·π΄= ππ·πΆ + ππΆπ΅ + ππ΅π΄
330 30 50
150 mm
GAB = 80 Gpa
Shear stress in BC
Ξ€π΅πΆ
ππ΅πΆ
= ππ΅πΆ
π
120
πβ404
32 β1612 = ππ΅πΆ
20β10β3 ππ΅πΆ= 9.6 πππ
Shear stress in CD
Ξ€πΆπ·
ππΆπ·
= ππΆπ·
π
240
πβ(304β204)
32 β16β12
= ππΆπ·
15β10β3 ππΆπ·= 56.41 πππ
Shear stress in AB
Ξ€π΄π΅
ππ΄π΅
= ππ΄π΅
π
720
πβ(504β304)
32 β10β12
= ππ΄π΅
25β10β3 ππ΄π΅= 33.703πππ
Angle of twist
ππ·π΄= ππ·πΆ + ππΆπ΅ + ππ΅π΄

MECHANICS OF SOLIDS 9
ππ·π΄= Ξ€πΆπ·βπΏπΆπ·
πΊπΆπ·βππΆπ·
+ Ξ€πΆπ΅βππΆπ΅
πΊπΆπ΅βππΆπ΅
+Ξ€π΅π΄βπΏπ΅π΄
πΊπ΄π΅βππ΄π΅
ππ·π΄= ( 240β0.15
60β (304β204) + 120β0.12
120β404 + 720β0.15
80β(504β304)) 32
πβ 10β3
ππ·π΄= 0.0124 πππ
ππ·π΄= 0.7 degrees
ππ·π΄= Ξ€πΆπ·βπΏπΆπ·
πΊπΆπ·βππΆπ·
+ Ξ€πΆπ΅βππΆπ΅
πΊπΆπ΅βππΆπ΅
+Ξ€π΅π΄βπΏπ΅π΄
πΊπ΄π΅βππ΄π΅
ππ·π΄= ( 240β0.15
60β (304β204) + 120β0.12
120β404 + 720β0.15
80β(504β304)) 32
πβ 10β3
ππ·π΄= 0.0124 πππ
ππ·π΄= 0.7 degrees
1 out of 9

Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
Β© 2024 | Zucol Services PVT LTD | All rights reserved.