Miami Dade College MGF 1106 Math to Stats Exam 2 Solutions Spring 2019

Verified

Added on Β 2023/01/18

|6
|860
|24
Homework Assignment
AI Summary
This document provides solutions for the MGF 1106 Math to Stats Pathway (Blended) Exam 2, administered at Miami Dade College (MDC) in Spring 2019. The exam covers key concepts in logic and set theory, including translating symbolic statements into words and vice versa, writing negations of quantified statements, and constructing and interpreting truth tables. The solutions demonstrate how to determine the validity of arguments using truth tables, and how to find the inverse, converse, contrapositive, and negation of conditional statements. Specifically, the solutions address problems related to symbolic logic, truth tables, and argument validity, offering step-by-step explanations and detailed answers to each question in the exam, which includes determining whether two statements are equivalent.
Document Page
MGF 1106Math to Stats Pathway (Blended)
MDC Spring 2019
Exam II Chapter 3
Prof. Charles
NAME: __________________ DATE: ____________
SCORE: _____________
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Let p, q, and r represent the following simple statements:
p: I’m registered.
q: I’m a citizen.
r: I vote.
Write each of the symbolic statements in words:
1.
Sol.
Since, I am registered and I am a citizen, therefore, I vote.
2.
Sol.
If do not vote then either I am not registered or I am not a citizen.
Write each compound statement in symbolic form.
3. I am registered and a citizen, or I do not vote.
Sol.
𝑝 ∩ π‘ž βˆͺ ~π‘Ÿ
4. If I am not registered or not a citizen, then I do not vote.
Sol.
(𝑝~ βˆͺ ~π‘ž) β†’ ~π‘Ÿ
Write the negation of each quantified statement. (The negation should begin with β€œall,”
β€œsome,” or β€œno.”)
5. All numbers are divisible by 5.
Sol.
No numbers are divisible by 5.
6. Some people wear glasses.
Sol.
Some people do not wear glasses.
7. Not all dogs are playful.
Sol.
Document Page
All dogs are playful.
Construct a truth table for the statement.
8.
Sol.
p q ~π‘ž 𝑝 βˆͺ ~π‘ž ~(~𝑝 βˆͺ ~π‘ž)
0 0 1 1 0
0 1 0 1 0
1 0 1 1 0
1 1 0 1 0
Construct a truth table for the given statement. Use the truth table to determine whether
the statement is a tautology.
9.
Sol.
p q r ~π‘ž 𝑝 ∨ π‘Ÿ ∼ (𝑝
∨ π‘Ÿ)
∼ π‘ž ∧ π‘Ÿ ∼ (𝑝
∨ π‘Ÿ) β†’
∼ π‘ž ∧ π‘Ÿ
0 0 0 1 0 1 0 0
0 0 1 1 1 0 1 1
0 1 0 0 0 1 0 0
0 1 1 0 1 0 0 1
1 0 0 1 1 0 0 1
1 0 1 1 1 0 1 1
1 1 0 0 1 0 0 1
1 1 1 0 1 0 0 1
From the truth table, we can see that this statement is not a tautology.
Document Page
Use the truth table to determine whether the two statements are equivalent.
10. ~p q, q p
Sol.
p q ~𝑝 ~𝑝 β†’ π‘ž π‘ž β†’ ~𝑝
0 0 1 0 1
0 1 1 1 1
1 0 0 1 1
1 1 0 1 1
From the above table, we can conclude that the above two statements are not equivalent to each
other.
11. Write the inverse, converse, and the contrapositive of: if it is August, it does not
snow.
a) Inverse
Sol.
If it is not August, it snows.
b) Converse
Sol.
If it does not rain, then it is August.
c) Contrapositive
Sol.
If it snows, then it is not August.
d) Negation
Sol.
It is August and it snows.
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
determine whether each argument in problem 11-14 is valid or invalid.
12. If a parrot talks, it is intelligent.
This parrot is intelligent.
Sol.
𝑝: 𝐴 π‘π‘Žπ‘Ÿπ‘Ÿπ‘œπ‘‘ π‘‘π‘Žπ‘™π‘˜π‘ 
π‘ž: π‘ƒπ‘Žπ‘Ÿπ‘Ÿπ‘œπ‘‘ 𝑖𝑠 𝑖𝑛𝑑𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑑
𝑆: 𝐼𝑓 π‘Ž π‘π‘Žπ‘Ÿπ‘Ÿπ‘œπ‘‘ π‘‘π‘Žπ‘™π‘˜π‘ , 𝑖𝑑 𝑖𝑠 𝑖𝑛𝑑𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑑 = 𝑝 β†’ π‘ž
𝑇: π‘‡β„Žπ‘–π‘  π‘π‘Žπ‘Ÿπ‘Ÿπ‘œπ‘‘ 𝑖𝑠 𝑖𝑛𝑑𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑑, π‘‘β„Žπ‘’π‘Ÿπ‘’π‘“π‘œπ‘Ÿπ‘’ π‘π‘Žπ‘Ÿπ‘Ÿπ‘œπ‘‘ π‘‘π‘Žπ‘™π‘˜π‘  = π‘ž β†’ 𝑝
p q 𝑆 = 𝑝 β†’ π‘ž 𝑇 = π‘ž β†’ 𝑝
0 0 1 1
0 1 1 0
1 0 0 1
1 1 1 1
We can say that for all cases when S is true, T is not true. Therefore, it is not a valid
statement.
13. I am sick or I am tired.
I am not tired.
Sol.
𝑝: 𝐼 π‘Žπ‘š π‘ π‘–π‘π‘˜
π‘ž: 𝐼 π‘Žπ‘š π‘‘π‘–π‘Ÿπ‘’π‘‘
𝑆: 𝐼 π‘Žπ‘š π‘ π‘–π‘π‘˜ π‘œπ‘Ÿ 𝐼 π‘Žπ‘š π‘‘π‘–π‘Ÿπ‘’π‘‘ = 𝑝 βˆͺ π‘ž
𝑇: 𝐼 π‘Žπ‘š π‘›π‘œπ‘‘ π‘‘π‘–π‘Ÿπ‘’π‘‘, π‘‘β„Žπ‘’π‘Ÿπ‘’π‘“π‘œπ‘Ÿπ‘’, 𝑖 π‘Žπ‘š π‘ π‘–π‘π‘˜ = ~π‘ž β†’ 𝑝
p q ~π‘ž 𝑆 = 𝑝 βˆͺ π‘ž 𝑇 = ~π‘ž β†’ 𝑝
0 0 1 0 0
0 1 0 1 1
1 0 1 1 1
1 1 0 1 0
We can say that for all cases when S is true, T is not true. Therefore, it is not a valid
statement.
14. All rabbis are Jewish.
Sol.
𝑝: 𝐴𝑙𝑙 π‘Ÿπ‘Žπ‘π‘π‘–π‘  π‘Žπ‘Ÿπ‘’ π½π‘’π‘€π‘–π‘ β„Ž
π‘ž: π‘†π‘œπ‘šπ‘’ 𝐽𝑒𝑀𝑠 π‘œπ‘π‘ π‘’π‘Ÿπ‘£π‘’ π‘˜π‘œπ‘ β„Žπ‘’π‘Ÿ π‘‘π‘–π‘’π‘‘π‘Žπ‘Ÿπ‘¦ π‘‘π‘Ÿπ‘Žπ‘‘π‘–π‘‘π‘–π‘œπ‘›π‘ 
𝑆: π‘†π‘œπ‘šπ‘’ π‘Ÿπ‘Žπ‘π‘π‘–π‘  π‘œπ‘π‘ π‘’π‘Ÿπ‘£π‘’ π‘˜π‘œπ‘ β„Žπ‘’π‘Ÿ π‘‘π‘–π‘’π‘‘π‘Žπ‘Ÿπ‘¦ π‘‘π‘Ÿπ‘Žπ‘‘π‘–π‘‘π‘–π‘œπ‘›π‘ 
Document Page
Since it is given that p and q are always true, that All rabbis are Jewish and Some Jews observe
kosher dietary traditions. Hence this statement is also true that Some rabbis observe kosher
dietary traditions.
chevron_up_icon
1 out of 6
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]