Calculus III: Partial Derivatives and Surface Normals

Verified

Added on  2025/08/27

|5
|179
|176
AI Summary
Desklib provides solved assignments and past papers to help students learn.
Document Page
Question 1
[ x , y ]=meshgrid (0 :2pi , 0:2pi) ;
A=((2+cos ( x)).cos( y));
B=((2+cos( x )).sin ( y ));
C=( sin( x));
W =( ( A .2+ B .2)2).2 +C .2
surf ( x , y , W )
xlabel(x) ;
ylabel (y );
zlabel (W) ;
Figure 1: Code Execution on Matlab
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Figure 2: Surface Plot for Given Cartesian Equation
Question 2
f ( x , y , z ) =( x2 + y22)2
+z2=1
f ( x , y , z ) = [ f x ( x , y , z ) , f y ( x , y , z ) , f z ( x , y , z ) ]
f ( x , y , z ) = f
x ^i + f
y ^j+ f
z ^k
So here,
f
x =
x ( x2+ y22)2
+ z21 ¿
f
x =2 ( x2+ y22 )[ ( x2+ y2 )
1
2 × 2 x ]
f
x = ( 2 x2+ y24 ) [ 2 x
x2 + y2 ]
f
x = 4 x x2 + y28 x
x2 + y2
Document Page
f
x =4 x 8 x
x2 + y2
f
x =4 x [ 1 2 x
x2 + y2 ]
Similarly,
f
y =
y ( x2 + y22)2
+ z21¿
f
y =2 ( x2 + y22 ) [ ( x2 + y2 )
1
2 ×2 y ]
f
y = (2 x2 + y24 ) [ 2 y
x2 + y2 ]
f
y = 4 y x2 + y28 y
x2+ y2
f
y =4 y 8 y
x2+ y2
f
y =4 y [1 2 y
x2+ y2 ]
Now,
f
z =
z ( x2+ y22)2
+ z21 ¿
^n=(
n
|n| )
|n|= x2+ y2+ z2
|n|= (1 2
x2 + y2 )
2
+(1 2
x2+ y2 )
2
+12
Document Page
¿ 12 +( 2
x2 + y2 )
2
2 ( 2
x2+ y2 ) +1+ ( 2
x2 + y2 )
2
+2 ( 2
x2 + y2 ) +1
Simplifying above equation, we get;
|n|=3+ 8
x2 + y2 ¿2 ¿
^U =(1 2
x2+ y2 +1 2
x2 + y2 + 1)/¿
Above vector is the outward unit normal to the surface. Hence proved
Question 3
Plane S=x+ y+z =0
Considering 3 coordinates as equal to 1(assumption: tangent plane is parallel to the plane S);
¿ 1 2
x2 + y2 ,1 2
x2+ y2 ,1>¿ ---------- (1)
¿ 1,1,1>¿ ----------- (2)
x (1 2
x2 + y2 )=1
Z(1)=1
X = 1
1 2
x2+ y2
y= 1
1 2
x2+ y2
z=1
x= x2 + y2
x2 + y22
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
y= x2 + y2
x2+ y2 2
z=1
So the point on plane S, on which the tangent plane is parallel to the plane, is;
( x2 + y2
x2 + y22 , x2 + y2
x2 + y22 , 1)
chevron_up_icon
1 out of 5
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]