Probability Homework Solution: Detailed Answers and Explanations

Verified

Added on  2022/12/01

|8
|1437
|106
Homework Assignment
AI Summary
This document presents a comprehensive solution to a probability assignment, covering a range of concepts from basic probability calculations to more advanced topics such as the gamma and Poisson distributions. The solution includes detailed answers to problems involving normal distributions, expected values, and variance. It also provides step-by-step solutions for calculating probabilities, expectations, and the moment-generating function (mgf) for various distributions. Furthermore, the assignment explores continuous random variables, integration by parts, and proofs related to the properties of distributions. This assignment is a valuable resource for students studying probability and statistics, offering clear explanations and methodologies for solving complex problems. It covers topics from calculating probabilities of radiation exposure to proving the mgf of a gamma distribution and calculating its mean and variance.
Document Page
Probability
Student Name:
Instructor Name:
Course Number:
7th September 2019
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Question 1:
Suppose that the amount of cosmic radiation to which a person is expected while flying from Sydney
to perth is a random variable having a normal distribution with mean μ = 4.35 mrem and standard
deviation σ = 0.59 mrem (here mrem is a unit of radiaton exposure). Calculate the probabilities that
a person will be exposed to:
(a) Less than 3.35 mrem of radiation
Answer
P ( X <3.35 ) =P ( Xμ
σ < 3.354.35
0.59 )
¿ P (Z<1.00
0.59 )
¿ P ( Z 1.6949 )
¿ 0.0450472
P ( X <3.35 ) =0.0450
(b) More than 5.25 mrem of radiation
Answer
P ( X >5.25 ) =1P ( Xμ
σ < 5.254.35
0.59 )
¿ 1P (Z < 0.9
0.59 )
¿ 1P ( Z<1.52542 )
¿ 10.9364228
¿ 0.0635772
P ( X >5.25 )=0.0636
(c) Anywhere from 3.5 to 4.5 mrem of radiation
Answer
P ( 3.5<X <4.5 ) =P ( 3.54.35
0.59 < Xμ
σ < 4.54.35
0.59 )
¿ P ( 0.85
0.59 <Z < 0.15
0.59 )
¿ P (1.4407< Z< 0.2542 )
¿ P ( Z <0.2542 ) P ( Z1.4407 )
¿ 0.60032950.0748347
¿ 0.5254948
P ( 3.5< X < 4.5 )=0.5255
Document Page
Question 2:
A player tosses a coin having the probability 2
5 of coming up heads. The game terminates
when the player tosses a tail. If the first toss is a tail the player wins nothing. Otherwise, the
player wins 2n1 dollars if n successive heads have been tossed. Let X denote the total
number of dollars won in any particular game. Calculate E(X). How much should a gambler
be willing to pay to play the game?
Answer
P( H )= 2
5
P ( T ) =1 2
5 =3
5
E ( X ) =
i=1
n
xi pi= 2n12
5
The gambler should be willing to pay 2n1 dollars to play the game.
Question 3:
Let X have a Poisson distribution with parameter λ. Calculate the expectation of the random
variable
Y = X ( X 1)( X2)
Answer
E ( Y )=E ( X ( X1 ) ( X 2 ) )=
x=0

(x )(x1)(x 2) eλ λx
x !
¿
x=3

( x)( x1)(x2) e λ λx
x ! because x =0 , x =1x=2 terms are themselves 0
¿
x=3
e λ λx
( x3 ) ! divide out by x , x1x2
¿
x=3
e λ λx
( x3 ) ! divide out by x , x1x2
¿ λ3 e λ

x=3
λx3
( x3 ) ! factor out e λλ3
Document Page
¿ λ3 e λ
( λ0
0 ! + λ1
1! + λ2
2! + λ3
3 ! + )
¿ λ3 e λ eλ
¿ λ3
Question 4:
Let X be a continuous random variable with density function
f X ( x ) = { 3
( 2+ x ) 2 , 0< x <4 ,
0 ,Otherwise .
Calculate E( X)and Var ( X). You may need to use integration by parts
Answer
E ( X ) =
0
4
x f ( x ) dx
¿
0
4
x 3
( 2+ x ) 2 dx
¿
0
4
3 x
( 2+ x )2 dx
¿ 3
0
4
x
( 2+ x ) 2 dx
Now lets solve
0
4
x
( 2+ x )2 dx first
let u=2+ x du
dx =1
¿
0
4
u2
u2 du
Expanding yields ;
¿
0
4
( 1
u 2
u2 )du
¿
0
4
1
u du2
0
4
1
u2 du
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page

0
4
1
u du=ln u
2
0
4
1
u2 = 2
u
So we have;
ln u+ 2
u
Substituting yields;
ln (x+2)+ 2
x+2
So we have;
[3 ln ( x+2 ) + 6
x+ 2 ]0
4
¿ 3 (ln ( 6 )ln (2 ) 2
3 )
¿ 3 ln ( 6 ) 3 ln ( 2 ) 2
1.2958
Var ( X ) =
0
4
x2 f ( x ) dx [ E(X ) ] 2

0
4
x2 f ( x ) dx
¿
0
4
x2 3
( 2+ x )2 dx
¿ 3
0
4
x2
( 2+ x ) 2 dx
let u=2+ x du
dx =1
¿
0
4 ( u2 ) 2
u2 du
Solvingthe integral yields ;
¿12 ln ( x +2 ) 12
x +2 +3 x
¿ [12 ln ( x +2 ) 12
x+2 +3 x ]0
4
Document Page
¿ 3 (4 ln ( 6 ) +4 ln ( 2 )+ 16
3 )
¿12 ln (6 ) +4 ln ( 2 )+ 16
2.8167
Var ( X )=2.81671.29582
¿ 2.81671.6792
¿ 1.1375
Question 5:
Let X be a continuous random variable whose pdf f X ( x ) is a gamma distribution with
parameters α and λ.
(a) Prove that the mgf of X is
ψ X ( t )=( λ
λt )α
,<t <λ
Answer
mgf =M X ( t ) =E ( etX ) =
0

etX f X ( x)dx
We 1st take t <λ
Now we have;
M X ( t ) = λα
Γ ( α )
0

xα 1 e ( λt ) x dx
¿ λα
Γ ( α )
0

( u
λt )α 1
eu du
λt substituting ( λt ) x=u
¿ λα
Γ ( α ) ( λt )α
0

uα1 eu du
¿ λα
Γ ( α ) ( λt )α Γ ( α ) defn of Gamma distribution
¿ ( λ
λt )
α
(b) Use ψ X ( t ) to find the formula for E ( X k ).
Answer
Since
Document Page
ψ X ( t ) =( λ
λt )
α
But we know that ψX ( t ) =E ( etX )
SoE ( X k ) would be;
E ( X k )=1 ( λ
λt ) α
(c) Calculate the mean and variance of X.
Answer
E ( X ) =


x f ( x ) dx
¿
0

x xα 1 e
x
λ
Γ ( α ) λα dx
¿ Γ ( α+1 ) λα+1
Γ ( α ) λα
0

x(α +1)1 e
x
λ
Γ ( α+1 ) λα+ 1 dx
¿ α Γ ( α ) λα +1
Γ ( α ) λα
¿ αλ
To obtain the variance, Var ( X ), we know that;
M ( t )= ( λ
λt )α
= ( 1λ t )α
It therefore follows that
M ' ( t ) = ( α ) ( 1λt )α 1 ( λ ) =αλ ( 1 λt ) α1
SoM ' ( t )=αλ
M ' ' ( t )=αλ (α1 ) (1λt )α2 (λ )
¿ α λ2 (α +1) ( 1λt )α 2
E ( X2 ) =M ' ' ( 0 )
M ' ' ( 0 )=α λ2 ( α +1 )=α 2 λ2+α λ2
V ar ( X )=E ( X2 ) [ E ( X ) ]2
¿ α 2 λ2+ α λ2α2 λ2
¿ α λ2
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
chevron_up_icon
1 out of 8
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]