Quantum Mechanics Assignment: Analysis of 1D Potential Well System

Verified

Added on  2022/09/01

|12
|745
|53
Homework Assignment
AI Summary
This assignment delves into the realm of quantum mechanics, specifically focusing on a one-dimensional potential well. The solution begins by addressing the time-dependent Schrödinger equation across three distinct regions and employs the separation of variables method to derive the wavefunction within a specified region. It then proceeds to determine the general solution for the wavefunction and establishes the relationship between the wave vector and energy. The boundary conditions are applied to derive the solution, followed by the calculation of the normalization constant and energy expression. The assignment further examines the superposition of wavefunctions and the conditions for their normalization, alongside the analysis of a particle's average position and its time dependence. It then extends to the Heisenberg uncertainty principle and the exploration of a two-level system with a dissipative Hamiltonian, including the determination of energy eigenstates and probabilities. Finally, it investigates the time-dependent Schrödinger equation, probability calculations, and simulation of the system's behavior using Julia, providing insights into the probabilities of finding the system in different states.
Document Page
1
Quantum Mechanics
Name
Institutional Affiliation
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
2
One Dimensional Potential Well
Assume a quantum particle in 1D subjected to the potential defined as
V ( x )= { for x <0
0 For 0< x < L
for L< x
1. Write the time-dependent Schrödinger equation in the three regions naturally
separated.
i ψ (x ,t)
t =2
2 m
2 ψ ( x , t)
x2 +V (x ,t )ψ (x ,t )
2. Use the method of separation of variables to show that the wavefunction of
the system in the region 0 x Lcan be written as Ψ ( x , t )=ψ ( x ) f ( t ) , for
which the time-dependent Schrödinger equation becomes
i t f (t )
f (t ) =E And 2
2m
2 x
2 ψ ( x )
ψ ( x ) =E
¿ separation variable method Ψ ( x , t ) is a product of 2 functionseach is
a function of only 1 variable .
ψ ( x , t ) =ψ ( x ) f (t)
Putting into Schrö dinger' s equation yields
i f ( t )
t ψ ( x ) =2
2 m
2 ψ ( x )
x2 f (t )+V ( x , t)ψ (x) f (t)
dividing by ψ
i f (t)
t
1
f (t) =2
2 m
2 ψ ( x )
x2
1
ψ ( x )+V ( x , t )
Considering potentialthat do not explicitly depend on time
V ( x , t ) =V ( x )
Document Page
3
i f (t)
t
1
f (t) =2
2 m
2 ψ ( x )
x2
1
ψ ( x ) +V (x )
each side depends only on one variable
i f (t)
t
1
f (t) =E= i t f (t )
f (t) =E
2
2m
2 ψ ( x )
x2
1
ψ ( x ) +V ¿ =E
3. Show that the most general solution for the wavefunction ψ ( k ) is given by
ψ ( k ) = A sin ( kx ) + B cos (kx ),
And write explicitly the relation between the wave vector k and the energy E.
For x 0 x L E>V =0
2
2m
2 ψ
x2 = (EV )ψ Let ψ ( x ) = A ebx
b=± jk where k =P= 2 m( Ev)
k = 2m ¿ ¿ ¿
ψ ( x ) = A e±ikx
ψ ( k ) = A sin ( kx ) + B cos (kx ),
Relationship between the wave vector k and the energy E
k = 2 m( Ev )

4. Use the boundary conditions of the problem to deduce that the solution must
be
ψn ( x ) =A sin ( n πx
L ), with n z
Using boundary conditions
Document Page
4
ψ ( x=0 ) =0 A=0 ψ ( x=L ) =0 ± AsinkL=0
sin kL=0 And k n L=
k n=
L = 2 m En
En =( n π
L )2 1
2 m ,t=
2 π
En =( n π
L )
2 1
8 m ,ψn ( x ) =A sin ( n πx
L ), with n z
5. Find the normalization constant A and write the energy En in terms of n
1=


ψn ( x ) 2 dx
¿ A2
kn

0

(sin )d = A2
kn

0

1
2 (1cos 2)d
A2
kn
¿
1
2
A2

L
( sin (2 )
2 ) =
A2
2
L
=1
A= 2
L
ψn =
{ 2
L
0
sin nπx
L 0 x L and x 0 , x L
En =( n
L )
2 1
8 m
6. Show that the wavefunction Ψ ( x , t )=ψn ( x ) ei E nt / h and therefore their linear
Superposition.
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
5
ψ ( x , t )=
n
αn ψn(x) e
i E n t

Withα n ϵ C, are solutions to the time-dependent Schrödinger equation.
i df (t )
dt =Ef (t)
df (t)
f (t ) =iE
dt
df (t )
f (t) = iE
dt
log f ( t ) =¿ iE
t+C ¿
Incorporating the constant C into ψ
f ( t )=e
iEt

ψ ( x , t ) =ψn(x) e
i En t

¿ linear superposition
ψ ( x , t )=
n
α n ψn(x) e
i E n t

7. What condition must satisfy the coefficients αn ,so that the wavefunction above
is normalized?
i. The function must be single valued
ii. It must be a finite value
8. Consider a particle occupying the state given by the superposition
Document Page
6
ψ ( x , t )= 1
1+ β2 [ ψ1 ( x ) ei w1 t + β ψn ( x ) ei wn t
]
With w1= Ei
and 0 β 1
a. Show that the average position of the quantum particle is given by
x = L
2 8 Lnβ ¿ ¿cos ( wnw1 ) t
In which case s is this mean value independent of time?
The positionof x expected value is defined as x = L
2


ψ ( x , t ) ( x , t ) dx
x = ψ x ψ
= L
2
0
L
1
1+ β2 [ ψ1 ( x ) ei w1t +β ψn ( x ) ei wn t
]dx
L
2 [ 1
1+β2 [ ψ1 ( x ) ei w1 t + β ψn ( x ) ei wn t
] ]L
L
2 ¿
x = L
2 8 Lnβ ¿ ¿cos ( wnw1 ) t
b. Show that x2 , p p2 are given by the following
x2 = 1
2 ψ a2 + at2
+a at +at a ψ =
L2
12(1+ β2 ) ¿
=¿dx
= L2
12(1+ β2 ) ¿
Document Page
7
p =4 ¿ ¿
p =¿
0
L
ψ ( x , t)
i

x ψ ( x , t ) dx
p = ψ x ψ
p =
0
L
1
1+ β2 [ ψ1 ( x ) ei w1 t + β ψn ( x ) ei wn t
]
2
L [ 1
1+β2 [ ψ1 ( x ) ei w1 t + β ψn ( x ) ei wn t
] ] L
4
L2 1+ β2 ¿
p =4 ¿ ¿
p2 =2 π2 ¿ ¿
p2 =1
2 (2 at a1a2at2
)
¿ ¿dx) ^2
1
2 ( 2 at a1a2at2
) =
0
L
( 1
1+β2 )
2
[ ψ1 ( x ) ei w1 t + β ψ n ( x ) ei wn t
] 2
¿
0
L
( 1
1+ β2 )
2
[ ψ1 ( x ) ei w1 t + β ψn ( x ) ei wnt
] 2
¿ 2 π2
L2 ¿
p2 =2 π2 ¿ ¿
c. Obtain σ x and σ p. Does this state satisfy the Heisenberg uncertainty principle? What
n and β allow to get the closest to this fundamental limit?
σ x = x2 x 2
σ x = ¿ ¿
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
8
¿ ¿ ¿
σ p= p2 p 2
¿ ¿ ¿
¿ ¿ -¿
The uncertainty positionmomentum are consistent withthe uncertainty principle
thus they satisfy Heisenbergy uncertainty principle.
A dissipative Hamiltonian
Consider a so-called two-level system. In the basis of | g and | e (the ground and
excited states, respectively), the Hamiltonian describing the dynamics of the two-
level system can be expressed in a matrix form as
H= [ Γ /2 Ω
Ω ωΓ / 2 ]
Where ω is the energy difference between the excited and the ground state, Ω is
the Rabi frequency, which induces oscillations between the two levels, and Γ is a
dissipation rate.
1. Show that the energies of the Eigen states of the Hamiltonian are given by
E1=
2 ¿ Γ And E2=
2 ¿ Γ
¿ the Hamilton ¿ we can find the eigenenergies as
Using the matrix given
Document Page
9
( E1 )=1
2 ¿ +ωΓ /2) + 1
2 ( Γ
2 ω Γ
2 )
2
+ 4 Ω2
( E2 ) =1
2 ¿ +ωΓ /2)¿ 1
2 ( Γ
2 ω Γ
2 )
2
+ 4 Ω2
E1=
2 (ω+ ¿ (4 Ω2+ω ¿1/ 2- Γ ¿
E2=
2 (ω¿ (4 Ω2+ω ¿1/ 2- Γ ¿
Therefore E1=
2 ¿ Γ ) and E2=
2 ¿Γ)
2. In the previous question, how can you interpret the fact that the energies are
complex numbers?
They allowsustable frequencies ¿ be found one run for one set of
operating conditions .
3. The Eigen states of the Hamiltonian can be expressed as
|ψ1 =c1|g +c2e , and|ψ2 =d1| g +d2 e ,
Find the coefficients c1,c2, d1 and d2 in terms of the parameters of the system,
namely ω , Ω and Γ .
Hint: Remember that the elements of the basis are orthonormal g e =0 ,
g g = e e =1 and that the states have to be normalized.
ψ± =cos ( θ
2 ) exp (-iφ /2 )Φ 1>+sin ¿exp (iφ /2 )Φ 2>
¿ (-iφ / 2 )Φ 1>+cos ¿ (iφ /2 )Φ 2>
Tan θ = 2 Ω / ( Γ
2 ωΓ /2 ¿
Document Page
10
Where tan θ =2 (
Ω
Γ
2 (ω Γ
2 )), and Ω=Ω ei φ
4. Show that if α , β C such that α 2 + β 2 = 1, the state
ψ ( x ) = α e
i E1 t
| ψ1 + β e
i E2 t
|ψ2
α 2 + β 2 = 1
ψ ( x ) =α 2 w ( ψ1 ) + β 2 w ( ψ2 )
where w=e
iEt

ψ ( x ) = α e
i E1 t
| ψ1 + β e
i E2 t
|ψ2
Is a solution to the time-dependent Schrödinger equation?
ψ ( x ) =U ( ψ ) is atime dependent of ψ1 where U isthe time evolution operator
5. Using the state of the previous question, show that the probability to find the two
level system in its ground state is
Pg ( t )= g ψ ( t ) 2=¿+α β+¿ c1 d 1
+¿ ei (ω2ω1 )t
¿ ¿)e Γt
And the probability to find it in its excited state is given by
Pe ( t ) = ϵ ψ ( t ) 2 =¿+α β+¿ c2 d 2
+¿ ei ( ω2ω1 ) t
¿ ¿)e Γt
Where ωi = Ei / for i = 1, 2.
Are the probabilities conserved (is their sum equal to 1 at all times)? Discuss what
happens.
ψ ( x ) = α e
i E1 t
| ψ1 + β e
i E2 t
|ψ2
Suppose the original stste of the systemψ ( x , 0 ) =ϕ1( x )
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
11
Then C¿=cos θC+¿=sin θ¿ ¿
ψ ( x ) =¿ ¿ +sin2 θ ei E+ ¿t /¿]ϕ 1+sin θ cos θ ¿
Therefore Pg ( t ) =¿+α β+¿ c1 d 1
+¿ ei ( ω2ω1 ) t
¿ ¿)e Γt
¿ Pe ( t )=¿+α β+¿ c2 d 2
+¿ ei (ω2ω1 )t
¿ ¿)e Γt
6. Solve the time-dependent Schrödinger equation to show that if the two-level
system is initially in its excited state, that is |ϕ (0) = | e , then at later times the
state is given by | ϕ (t) = cg(t ) | g + ce(t ) |e where the coefficients are given by
Cg (t) = 2 iΩ
4 Ω2 +ω2 sin( 4 Ω2+ ω2 Γ
2 ) ε Γt eiωt /2
Ce (t) =¿
ψ ( x ) =¿ ¿ +sin2 θ ei E+ ¿t /¿]ϕ 1+sin θ cos θ ¿
Pe ( t ) =4 sin2 θ cos2 θ sin2 2 +V 2 t/
Pe ( t ) = 1
2
V 2
2+V 2
1
2
V 2
2 +V 2 Cos 2 2 +V 2 t/
Pg ( t )= 1
2
2 2+V 2
2 +V 2
+ 1
2
V 2
2 +V 2 cos2 2 +V 2 t/
Therefore
Cg (t) = 2 iΩ
4 Ω2 +ω2 sin( 4 Ω2+ ω2 Γ
2 ) ε Γt eiωt /2
Ce (t) =¿
Document Page
12
7. Use Julia to plot the probabilities to find that two-level system in the ground and
excited state given by the state in the previous question. Let and Γ = 1, Ω = 4 and
show the figures for various values ofω. For which ratioω /Ω is the probability Pe
always larger than Pg?
For the atom ¿ be excited state Ω=Γ =0 ( blue ) , and Γ =( green) =2,5 Γ (red).
chevron_up_icon
1 out of 12
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]