MZB125 Introductory Engineering Mathematics - Rocket Problems

Verified

Added on  2023/06/12

|10
|1461
|83
Homework Assignment
AI Summary
This assignment solution covers several engineering mathematics problems. The first question involves calculating the distance of a rocket from the origin and the angle of its trajectory. The second question focuses on torque calculations related to a force and weight acting on a point. It derives expressions for torque and determines conditions for negative resultant torque. The third question uses Gaussian elimination to solve a system of linear equations related to cost analysis and determines the most cost-effective batch size. Finally, the fourth question explores the properties of a hypocycloid, deriving expressions for velocity and acceleration, and determining the relationship between acceleration and distance. The document is available on Desklib, a platform offering a range of study tools and solved assignments for students.
Document Page
Running head: ENGINEERING MATHEMATICS 1
Engineering Mathematics
Name
Institution
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
ENGINEERING MATHEMATICS 2
Question 1
Part a
a= [ 3
5
10 ], b= [ 7
11
30 ] ,c =
[10
24
55 ]
OP= [ 3
5
10 ]+ [ 7
11
30 ]+ [10
24
55 ]= [20
40
95 ]
Distance of the rocket from origin ¿ 202 +402 +952= 11025=105
Part b
tanθ= Zcomponent
Radial component = 55
102 +242 =2.11538
θ=tan1 2.11538=64.699°
Part c
cosθ= a . c
¿ a|.|c¿ ¿
cosθ= ( 3 ~i+5 ~j+10 ~k ) . ( 10 ~i+22 ~j+55 ~k )
¿ ( 3 ~
i+ 5 ~
j+10 ~
k ). ( 10 ~
i+ 22 ~
j+55 ~
k )¿= 3 ( 10 ) +5 ( 24 ) +10(55)
( 32 +52 +102 ) . ¿¿ ¿
¿ 700
134 ( 3701 ) =0.994
θ=cos1 0.994=6.28 °
Document Page
ENGINEERING MATHEMATICS 3
Question 2
Part a
AP= AO + OP but OP=r ~j
OC=r ,OB=rcos , BC =h
BC=OC OB=r rcos =r ( 1cos ) =h
h
r = ( 1cos )
cos =1 h
r (equation1)
sin2 =1 ( 1 h
r ) 2
= h
r ( 2 h
r )
sin = h
r ( 2 h
r ) (equation2)
So, AO= AB+ BO=rsin ~
i+rcos ~
j (equation 3)
AP=rsin ~i+rcos ~j+ r ~j=rsin ~i+r (1+ cos ) ~j
Document Page
ENGINEERING MATHEMATICS 4
Substituting cos and sin obtained in equations 1 and 2 into AP we obtain:
AP=r h
r (2 h
r ) ~i+r (1+1h
r ) ~j
AP= hr (2 h
r ) ~
i+r (2h
r ) ~
j
AP= 2 hr h2 ~
i+r (2 h
r ) ~
j
Part b
Force F=Fcos θ ~iFsinθ ~j
Torque by force F about point A¿ AP× F
AP × F=τ F / A =
| ~
i ~
j ~
k
2 hr h2 r (2 h
r ) 0
Fcosθ Fsinθ 0
|
¿ ~
i ( 0 ) ~
j ( 0 ) + ~
k ( Fsinθ 2 hrh2Fr ( 2 h
r ) cosθ )
τ F / A= ( Fsinθ 2hr h2F ( 2r h ) cosθ ) ~k
Part c
Torque of W about point A is
W =mg ~
j
Then, from equation 3
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
ENGINEERING MATHEMATICS 5
AO=r (sin ~i+cos ~j )
AO × W =τ W / A =
| ~
i ~
j ~
k
rsin r cos 0
0 mg 0
|
¿ ~
i ( 0 ) ~
j ( 0 ) + ~
k (mgrsin )
¿ mgrsin ~
k
From equation 2, mgrsin ~
k =mgr h
r ( 2 h
r ) ~
k
τ W / A =mg 2 hrh2 ~
k
Part d
The resultant torque about point A ¿ τ F / A +τ W / A
¿ ( Fsinθ 2 hr h2F ( 2 r h ) cosθ ) ~k +mg 2 hrh2 ~k
Resultant Torque= ( ( Fsinθ+ mg ) 2 hrh2F ( 2 rh ) cosθ ) ~
k
The equation has two z components. That is, ( Fsinθ+mg ) 2 hrh2 and F ( 2 rh ) cosθ
For the resultant torque to be negative, the latter component should be larger than the first
component. That is,
F ( 2 rh ) cosθ> ( Fsinθ +mg ) 2 hrh2
Part e
Document Page
ENGINEERING MATHEMATICS 6
Cage radius , r=3 m h=1 m, θ= π
6 , g= 9.81m
s2 , F=500 N
We have:
F ( 2 rh ) cosθ> ( Fsinθ +mg ) 2 hrh2
Substituting the given variables into the inequality we get:
500 ( 61 ) cos ( π
6 )>
(500 sin ( π
6 )+ 9.81m ) 2 ×3 ×112
500 ( 5 ) 3
2 > ( 500(0.5)+9.81 m ) 5
1250 3>¿
Dividing both sides by 5 we obtain
968.2458>250+9.81 m
968.2458250>9.81 m
718.2458>9.81 m
73.2157>m
m<73.2157 kg
The heaviest mass that can be pulled¿ 73.2157 kg
Question 3
2 x+2 y + 4 z=19000 (1)
Document Page
ENGINEERING MATHEMATICS 7
2 x+ y +5 z=21000 (2)
2 x+3 y + 4 z=20000 (3)
We solve the equations using Gaussian elimination as follows:
Subtracting equation 1 from equation 2 we obtain
( 2 x+ y +5 z ) (2 x +2 y+4 z )=2100019000
y +z=2000 (4)
Then, subtracting equation 3 from equation 2 we get
( 2 x+ y +5 z ) (2 x +2 y+ 4 z )=2100020000
2 y + z=1000 (5)
Subtracting equation 5 from equation 4 we obtain
( y + z ) (2 y + z )=20001000
y=1000
Substituting y=1000 into equation 5 we get
2(1000)+ z=1000
z=1000+2000=3000
Substituting y=1000 and y=1000 into equation 1 we get
2 x+2 y + 4 z=19000
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
ENGINEERING MATHEMATICS 8
2 x=190002 y4 z
2 x=190002 ( 1000 )4 ( 3000 ) =19000200012000=5000
x= 5000
2 =2500
Therefore, x=2500 , y=1000 , z=3000
Part b(i)
Batch
size
Total Cost of Chemicals Total Cost of Preservative Total cost of
production
1 19000 0 19000
5 =19000 ×5 ×75 %=71250 2 ×10000=20000 71250+2000=91250
10 =19000 ×10 ×70 %=133000 5 ×10000=50000 133000+50000=183000
Part b(ii)
Batch 1total cost=19000
¿ batch ¿ cost per batch= 91250
5 =18250
¿ batch¿ cost per batch=183000
10 =18300
The most cost effective batch size is 5 since it has the lowest unit cost.
Question 4
Document Page
ENGINEERING MATHEMATICS 9
Part a
r ( t ) =( ( Rr ) cost +rcos ( Rr
r t )) , ( ( Rr ) sint rsin ( Rr
r t ) )
When R=2r ,the position of the hypocycloid will be:
r ( t )=
( ( 2r r ) cost +rcos ( 2 rr
r t ) ), ( ( 2r r ) sint rsin ( 2 rr
r t ) )
r ( t )= ( rcost+ rcost ) , ( rsintrsint )
r ( t )=( 2rcost ,0)
r ( t ) has an x-component only implying that the hypocycloid is a horizontal segment.
Part b
Given that r ( t ) =
( ( Rr ) cost +rcos ( Rr
r t )) , ( ( Rr ) sint rsin ( Rr
r t ) )
Velocity=r' ( t )
¿ ( ( Rr ) sintr ( Rr
r ) sin ( Rr
r t ) ) , ( ( Rr ) costr ( Rr
r ) cos ( Rr
r t ))
¿ ( ( Rr ) sint( Rr) sin ( Rr
r t ) ) , ( ( Rr ) cost( Rr )cos ( Rr
r t ) )
Acceleration=r' ' ( t )
¿ ( ( Rr ) cost ( Rr)2
r cos ( Rr
r t ) ), ( ( Rr ) sin t + (Rr)2
r sin ( Rr
r t ))
Document Page
ENGINEERING MATHEMATICS 10
Part c
When R=2r ,
acceleration=r' ' ( t )
( ( 2 r r ) cost(2 rr)2
r cos ( 2 rr
r t )) , ( ( 2r r ) sint + (2r r )2
r sin ( 2 rr
r t ))
¿ ( r costr cos t ) , ( r sint +rsint )
¿ (2 rcost , 0 )
r'' ( t )
r (t) =2 rcost
2 rcost =1
Hence, the acceleration is proportion to the distance OP
chevron_up_icon
1 out of 10
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]