EDU30011: Science & Inclusion Roles in Primary Education Context

Verified

Added on  2023/06/14

|12
|3502
|277
Essay
AI Summary
Document Page
Running Head: ROLES OF SCIENCE AND INCLUSION IN PRIMARY EDUCATION
1
Roles
of Science and Inclusion in Primary Education
Students’ Name
Institution Affiliation
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
ROLES OF SCIENCE AND INCLUSION IN PRIMARY EDUCATION 2
Introduction
1.1 Science and its importance in today’s world
In everyday life, people apply technologies and use products produced scientifically. According
to the study by University of Texas Arlington (2017, September 8) public policy for solving life
issues are passed on the basis of scientific evidence. Additionally, Lederman & Abell (2014)
argues the complex nature and the environment underlies scientific explanations. Currently, the
world is under the control of technology (University of Texas Arlington, 2017 September 8), and
hence insist on the need to equip with science based knowledge. By providing the children with
scientific concepts increase their chance of success (NewScientist, 2016 August 12). It is crucial to
expose young children to science as by so doing; it makes them develop an interest in science
(NewScientist, 2016). Therefore, government need to put extra efforts to introduce science in the
young children preferably starting at primary education (Harlen, 2017). For instance, the
curriculum of Australia primary education has been revised to allow inclusion of the science
education in the early stages of the school (Tytler, Symington, & Smith, 2011). In this study, the
objectives will be to elaborate the contributions of science in solving the real-life issues and the
importance of including science education in the early childhood education in the context of the
curriculum of Australia.
Body
1.2 Science rationale
Student lives and science
Science is applied in everyday and everywhere. According to the “University of Texas
Arlington” (Sep 8, 2017), there are various instances in which student apply science in the
Document Page
ROLES OF SCIENCE AND INCLUSION IN PRIMARY EDUCATION 3
everyday activities. The examples of commonly used scientifically developed products include
buses used to travel to school. Buses are products of complex mechanical engineering
innovations and works. At school children uses the pavement, sidewalks, lighting systems and
the infrastructures such as classroom designs depends on the scientific models (University of
Texas Arlington, 2017 September 8). At home, the technologies used for communication and
entertainment such as computers and smartphones get developed through engineering
particularly computer and software engineering (University of Texas Arlington, 2017 September
8).
Science is the discipline of study that aims at providing the explanations regarding nature,
how the natural process work, how it came to be and compiles knowledge from the past to the
most recent ideas, analyse and proof or disapprove their claims after discoveries (Watson, 2013).
The process of gathering evidence in science follows a set of procedures of engaging in
questions, reviewing the available information to develop a decent explanation, then connecting
the findings and relay a reliable, evidence-based information to the public (University of Texas
Arlington, 2017 September 8). In the world, there are several questions regarding how the
universe works. A majority of the problems get solved through scientific concepts and
experiments (Watson, 2013). As such science should the subject to emphasise for the children
since it imparts the knowledge used to solve the questions arising from the human natural
curiosity instinct (Watson, 2013).
In the past days, science played a vital role in giving explanations such as the how
chemicals reactions occur and the structures of organic and inorganic compounds (William,
Smith & Hashemi, 2011). As a result, it is clear that in classical era, scientist used science to
solve problems (Watson, 2013). For example, the ancient Greeks developed a calendar based on
Document Page
ROLES OF SCIENCE AND INCLUSION IN PRIMARY EDUCATION 4
observation of moon and stars. From the invention of calendar, old farmers benefited as they
were able to plan for the seasons and other activities. William, Smith & Hashemi (2011) argues
that science played a vital role in the evolution and civilisation of humanity. For instance,
through science humans discovered the patterns and the order of days, months and consequently
the calendar. Therefore, Science education should be emphasised in schools as it explains the
basic concepts and the origin and the purpose of civilisation (William, Smith & Hashemi, 2011).
In the modern days, there are several scientific and technological studies aimed at solving
the chronic diseases and other complications affecting human beings (Okano & Yamanaka,
2014). One significant technology under development is about stem cell researches. The
applications of the stem cells technology is a promising breakthrough in the field of biology
(Okano & Yamanaka, 2014). In fact, in future scientists will be using this technology to cure
diseases such as cancer, heart attacks, spinal injuries and Parkinson's (Okano & Yamanaka,
2014). For instance, stem technology has been successfully applied and helped in the battle
against leukaemia where the cells affected by leukaemia continually get replaced with healthy
cells (Okano & Yamanaka, 2014). To be able to fight problems affecting the humanity in future
science education is vital for the development of future problem solutions. In particular
technology knowledge is a promising field for careers, and hence science education is the only
road towards technology-based jobs.
1.3 Misconceptions in Science
Allen (2014) stated that there are several misconceptions in the primary education. Some
students understand the concept in erroneously. “A misconception refers to a held belief
regarding science and has not been scientifically proven to be true” (Gooding & Metz 2011).
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
ROLES OF SCIENCE AND INCLUSION IN PRIMARY EDUCATION 5
Further, Krisell (2015) related the sources of misconceptions emerge from use of poor language,
lack of examples when explaining a concept, false logic, textbooks and inefficient teaching style.
The effects of misconceptions results to children developing negative attitude towards science
subject hence poor performances (Gooding, & Metz, 2011).
According to Gooding & Metz (2011), the commonly encountered misconceptions science is
topic such as the size of body parts, density, particulate nature of matter and the shape of the
earth. According “University of Texas Arlington” (September 8, 2017), misconceptions develop
at early age. For instance, children at primary level get taught about sun rise and sun set (Allen
2014). As a result, children conceptualise the sun moving around the earth. At higher levels of
education science present facts that show that the earth rotates around the sun (Allen 2014). Such
contradictions should be reduced as it discourages children from furthering studies in science.
According “University of Texas Arlington” (September 8, 2017) kids form a basic conception a
short while after enrolling to school. Therefore, there is need to teach student fact at early age.
1.4 Benefits science education to student
According to the study by (NewScientist, 2016 August 12), it shows that exposing
children to the scientific concepts suits the young learner extends the knowledge in science
naturally. Additionally, the study shows that a child develops curiosity and explores more when
playing and having fun (NewScientist, 2016 August 12). Through playful games, children ask
questions and speculate about; the nature of living things, the solar systems, how chemical and
physical processes undergo. As a result of the game, they develop the interest in understanding
the behaviours of living things and materials. Krisell (2015) encourage play-based teaching
approach as it promotes discoveries. Also, Krisell (2015) urges to utilise support questions,
Document Page
ROLES OF SCIENCE AND INCLUSION IN PRIMARY EDUCATION 6
explorations, and the use of creativity in solving simple life problems. Therefore, teaching
children in the state, they enjoy most “playing” presents an excellent example of a teaching
approach (Krisell, 2015). As a result, more students will develop the interests for learning
science compared to the students under learning through class-based style. Science is the most
the most enjoyable subject to conduct lessons in many setting available naturally and support
play-based learning (Hurd & Anderson, 2017).
Teaching style employed by teachers plays a critical role, and the activities involved
turns to be the learning moments for lifetime experiences (Hurd & Anderson, 2017). In their
study, Hurd & Anderson (2017), advises teachers to guide students on how to explore simple
science experiments during the leisure time. National Research Council (2011) gives samples of
the simple tests such as cause-and-effect offer suitable for children. Furthermore, Fensham &
Gunstone (2013) stated that it is essential for early childhood teachers to have practical content
and create bewildering experiments. On this regard, science is the best engaging subjects for
children at all stages of life. Also, it has endless simple tests to use to conduct hence new
knowledge is acquired with new experience.
According to University of Texas Arlington (September 8, 2017), science is one of the
vital subjects with relevance and applicability universally. Science enables children to think
critically and encourages the problem-solving instinct in children (University of Texas Arlington
2017, September 8). As a result, student becomes transformed and becomes active members in
class and the community. For instance, conducting experiments in class involves student actively
(National Research Council, 2011). Nelson-Jones (2013) in his study concludes that science
transforms young children to develop life skills. For example, in a science classroom debates,
children learn how to articulate specific ideas and defend their points. According to Sadler
Document Page
ROLES OF SCIENCE AND INCLUSION IN PRIMARY EDUCATION 7
(2011), the justification based on evidence improves the understanding of the pupil. In addition,
science concepts and experiments take time to make an observation; as a result, the student
learns life skills in regarding patience and making a conclusion with the given evidence (Sadler,
2011). Nelson-Jones (2013) argues that patience and evidence-based decision learned through
science gets applied in the life thus account for the ethical conduct and responsibilities.
Therefore, science education is crucial as it improves the communication skills nurtures
leadership skills. A child becomes responsible citizens with a strong stand with evidence
(Nelson-Jones, 2013).
Through exposing a child to science in the early stages, influences the child interest in
future (Popkewitz, 2012). In his work, Popkewitz (2012), quoted the words of St Francis Xavier
who said the phrase “show me the child until he is seven, and I will show you the man.” In this
context, the phrase relates to the interplay of “nurture and nature”. Popkewitz (2012), explains
this scenario as a development stage of life where children explore the nature and get nurtured.
The argument of (Popkewitz, 2012) relates to the principles of “stem education”. The focus of
the “stem education model” on emphasis of science subjects such as physics and mathematics
(Successful STEM Education, 2018 n.d). According to study “Successful STEM Education
(2018 n.d)”, shows that elementary years is the period when pupils develop their interests in
STEM characteristics and careers.
Taylor & Cranton (2012), states that pupils undergoing through the “stem” learning
improves on several key aspects of life. First, the children improve on critical thinking,
observational and cognitive development, planning skills, spatial and visual processing, and
more importantly fine and motor planning skills (Taylor & Cranton, 2012). To achieve the
“stem” education requiremts, it need teacher get thorough training to prepare them become get
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
ROLES OF SCIENCE AND INCLUSION IN PRIMARY EDUCATION 8
qualified stem teachers. There are a few teachers skilled with the requirements of STEM
education. Stem educations, requires elementary school kids get chances to explore concepts
with assistance by the teacher and their parent at home (Uttal, & Cohen, 2012). Toshalis &
Nakkula (2012) supports “stem” educations and argues that children practically investigate
things on their own and discover but need to be motivated. Motivation should come from
teachers and guardians (Toshalis & Nakkula, 2012). Therefore, science is the best subject to
practice the requirements of “stem teaching approach”.
Despite the unsurpassable positive impacts of science education, human being should
take great care as adverse effects of science are detrimental (Horgan, (2015). Horgan (2015) argues
that it is crucial to encourage our children to learn science is right but caution on the extent of
extremism and states that it should is need to have a control. Kossin et al. (2016) relates extreme
science activities in connection to negative global environmental issue such as global warming.
Also, science attributes to health issues such as drug abuse and lifestyles diseases (Kossin et al.,
2016). Moreover (Kossin et al. 2016), claims technology such as the internet has corrupted the
social fabric and morals due to effects excessive use of platforms such as social media and the
internet. It is, therefore, necessary to encourage children to learn and develop science which will
cater to the interest of the environment and the social ties (Sadler, 2011).
Conclusion
Science is the basis of life in the universe. Its applications cut across the board from
schools, at home, and in the society. The dependence of science by humans is evident from the
historical records. Modern man has accumulated the knowledge in science from generation to the
other. As a result, the current ways of solving problems are increasingly becoming more
Document Page
ROLES OF SCIENCE AND INCLUSION IN PRIMARY EDUCATION 9
efficient. For instance, the use of stem cell technology in treating diseases problems such as
leukaemia, cancers and heart diseases. Science education does impart the concepts and
knowledge to children. Children explore science and become aspire to become professional
doctors, teachers and engineers. Additionally, through science children get nurtured to develop
crucial life skill and become responsible future leaders. The approach of teaching science related
subjects requires changes to actively involve student actively through experiments in class and in
free time. Further, the method is due to changes to accommodate the play-based learning style
which fits in the playful nature of children. The advantages of science education to the students
relates to the development of responsible and skilful people in life. Through science and
technology life of the human is improved through invention which solves the problems such
cancers and other killer diseases. For those who are against the science education, I challenge
them to give an equivalent subjects, capable playing the roles science of imparting knowledge
and skills applicable in the entire life.
Document Page
ROLES OF SCIENCE AND INCLUSION IN PRIMARY EDUCATION 10
References
Allen, M. (2014). Misconceptions in primary science. McGraw-Hill Education (UK).
Fensham, P. J., Gunstone, R. F., & White, R. T. (Eds.). (2013). The content of science: A
constructivist approach to its teaching and learning. Routledge.
Gooding, J., & Metz, B. (2011). From misconceptions to conceptual change. The Science
Teacher, 78(4), 34.
Harlen, W. (2017). The teaching of science in primary schools. David Fulton Publishers.
Horgan, J. (2015). The end of science: Facing the limits of knowledge in the twilight of the
scientific age. Basic Books.
Hurd, A., & Anderson, D. M. (2017). Kraus' Recreation & Leisure in Modern Society. Jones &
Bartlett Learning.
Kossin, J. P., Karl, T. R., Knutson, T. R., Emanuel, K. A., Kunkel, K. E., & O’Brien, J. J. (2016).
Reply to “comments on ‘monitoring and understanding trends in extreme storms: state of
knowledge’”. Bulletin of the American Meteorological Society, 2016(1), 1177-1179.
Krisell, M. R. (2015). Teachers' perceptions of teaching reading and writing through the use of
play-based developmentally appropriate practice and constructivist approaches. The
University of Memphis..
Lederman, N. G., & Abell, S. K. (Eds.). (2014). Handbook of research on science
education (Vol. 2). Routledge.
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
ROLES OF SCIENCE AND INCLUSION IN PRIMARY EDUCATION 11
National Research Council. (2011). Successful K-12 STEM education: Identifying effective
approaches in science, technology, engineering, and mathematics. National Academies
Press.
Nelson-Jones, R. (2013). Practical counselling and helping skills: text and activities for the
lifeskills counselling model. Sage.
NewScientist. (August 12, 2016). Why Attracting Young Children to Science Is Important.
Retrieved from https://jobs.newscientist.com/article/why-attracting-young-children-to-
science-is-important
Okano, H., & Yamanaka, S. (2014). iPS cell technologies: significance and applications to CNS
regeneration and disease. Molecular brain, 7(1), 22.
Popkewitz, T. S. (2012). Cosmopolitanism and the age of school reform: Science, education, and
making society by making the child. Routledge.
Sadler, T. D. (2011). Situating socio-scientific issues in classrooms as a means of achieving
goals of science education. In Socio-scientific Issues in the Classroom (pp. 1-9).
Springer, Dordrecht.
Sucessfull STEM education. (2018 n.d ). Improving STEM Curriculum and Instruction:
Engaging Students and Raising Standards. Retrieved from
http://successfulstemeducation.org/resources/improving-stem-curriculum-and-
instruction-engaging-students-and-raising-standards
Taylor, E. W., & Cranton, P. (2012). The handbook of transformative learning: Theory, research,
and practice. John Wiley & Sons.
Document Page
ROLES OF SCIENCE AND INCLUSION IN PRIMARY EDUCATION 12
Toshalis, E., & Nakkula, M. J. (2012). Motivation, engagement, and student voice. Boston, MA:
Jobs for the Future.
Tytler, R., Symington, D., & Smith, C. (2011). A curriculum innovation framework for science,
technology and mathematics education. Research in science education, 41(1), 19-38.
University of Texas Arlington. (September 8, 2017) Importance of science education in schools.
Retrieved from https://academicpartnerships.uta.edu/articles/education/importance-of-
science-education.aspx
Uttal, D. H., & Cohen, C. A. (2012). Spatial thinking and STEM education: When, why, and
how?. In Psychology of learning and motivation (Vol. 57, pp. 147-181). Academic Press.
Watson, J. (2013n.d ). Caring science definitions, processes and theory. Watson Caring Science
Institute and International Caritas Consortium retrieved from
:http://watsoncaringscience. org/aboutus/caring-science-definitions-processes-theory.
William F.. Smith, & Hashemi, J. (2011). Foundations of materials science and engineering.
McGraw-Hill.
chevron_up_icon
1 out of 12
circle_padding
hide_on_mobile
zoom_out_icon
logo.png

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]