University Statistics (STAT 101) Assignment: Detailed Solutions
VerifiedAdded on 2020/05/08
|9
|766
|62
Homework Assignment
AI Summary
This document presents a complete solution to a Statistics (STAT 101) assignment. The assignment covers various statistical concepts, including probability calculations using binomial distributions, true/false questions, and multiple-choice questions. Section II provides solutions to multiple-choice questions. Section III delves into more complex problems, such as calculating the mean, variance, and standard deviation of a discrete probability distribution. It also involves applying the binomial distribution to solve real-world scenarios. Furthermore, the assignment addresses probability calculations using the standard normal distribution, and calculating confidence intervals. Detailed step-by-step solutions are provided for each part of the assignment, making it a valuable resource for students studying statistics.

Running Head: STATISTICS (STAT 101)
Statistics (STAT 101)
Name of the Student
Name of the University
Author Note
Statistics (STAT 101)
Name of the Student
Name of the University
Author Note
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

1STATISTICS (STAT 101)
Table of Contents
Section – I........................................................................................................................................3
Answer 1......................................................................................................................................3
Answer 2......................................................................................................................................3
Answer 3......................................................................................................................................3
Answer 4......................................................................................................................................3
Answer 5......................................................................................................................................3
Answer 6......................................................................................................................................3
Section – II.......................................................................................................................................4
Section – III.....................................................................................................................................4
Answer 1......................................................................................................................................4
Part a........................................................................................................................................4
Part b........................................................................................................................................4
Answer 2......................................................................................................................................6
Part a........................................................................................................................................6
Part b........................................................................................................................................6
Answer 3......................................................................................................................................7
Part a........................................................................................................................................7
Part b........................................................................................................................................8
Table of Contents
Section – I........................................................................................................................................3
Answer 1......................................................................................................................................3
Answer 2......................................................................................................................................3
Answer 3......................................................................................................................................3
Answer 4......................................................................................................................................3
Answer 5......................................................................................................................................3
Answer 6......................................................................................................................................3
Section – II.......................................................................................................................................4
Section – III.....................................................................................................................................4
Answer 1......................................................................................................................................4
Part a........................................................................................................................................4
Part b........................................................................................................................................4
Answer 2......................................................................................................................................6
Part a........................................................................................................................................6
Part b........................................................................................................................................6
Answer 3......................................................................................................................................7
Part a........................................................................................................................................7
Part b........................................................................................................................................8

2STATISTICS (STAT 101)
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

3STATISTICS (STAT 101)
Section – I
Answer 1
Let X be defined as an event defined as the occurrence of head.
Thus, X ~ Bin (6, 0.5), where the number of independent trials = 6 and the probability of success
is 0.5.
Thus, P (X = 3) = 6C3 * (0.5)3 * (1 – 0.5)3 = 20 * (1/2)6 = 10× ( 1
2 ¿ ¿5
≠ 10× ( 1
2 ¿ ¿4
.
False
Answer 2
True
Answer 3
True
Answer 4
True
Answer 5
True
Answer 6
False
Section – I
Answer 1
Let X be defined as an event defined as the occurrence of head.
Thus, X ~ Bin (6, 0.5), where the number of independent trials = 6 and the probability of success
is 0.5.
Thus, P (X = 3) = 6C3 * (0.5)3 * (1 – 0.5)3 = 20 * (1/2)6 = 10× ( 1
2 ¿ ¿5
≠ 10× ( 1
2 ¿ ¿4
.
False
Answer 2
True
Answer 3
True
Answer 4
True
Answer 5
True
Answer 6
False
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

4STATISTICS (STAT 101)
Section – II
MCQ 1 2 3 4 5 6
Answers a a d b d d
Section – III
Answer 1
Part a
Number of cards
(x)
Probability
P(x) x*P(x)
(x^2)*P(x
)
0 0.18 0 0
1 0.44 0.44 0.44
2 0.27 0.54 1.08
3 0.08 0.24 0.72
4 0.03 0.12 0.48
Therefore, the mean of the distribution = E(x) = ∑ x∗P (x) = (0.44 + 0.54 + 0.24 + 0.12) = 1.34
E(x2) = ∑ x2 P ( x) = 0.44 + 1.08 + 0.72 + 0.48 = 2.72
Variance of the distribution = var(x) = E(x2) – (E(x))2 = 2.72 – (1.34)2 = 0.92
The standard deviation of the distribution = √var (x)= √0.92 = 0.96.
Part b
The Bruskin Market Research, Inc. determined that 40% of college students work part-time
during the academic year.
Section – II
MCQ 1 2 3 4 5 6
Answers a a d b d d
Section – III
Answer 1
Part a
Number of cards
(x)
Probability
P(x) x*P(x)
(x^2)*P(x
)
0 0.18 0 0
1 0.44 0.44 0.44
2 0.27 0.54 1.08
3 0.08 0.24 0.72
4 0.03 0.12 0.48
Therefore, the mean of the distribution = E(x) = ∑ x∗P (x) = (0.44 + 0.54 + 0.24 + 0.12) = 1.34
E(x2) = ∑ x2 P ( x) = 0.44 + 1.08 + 0.72 + 0.48 = 2.72
Variance of the distribution = var(x) = E(x2) – (E(x))2 = 2.72 – (1.34)2 = 0.92
The standard deviation of the distribution = √var (x)= √0.92 = 0.96.
Part b
The Bruskin Market Research, Inc. determined that 40% of college students work part-time
during the academic year.

5STATISTICS (STAT 101)
Therefore, the probability of the students working part time = 0.4
Let X be the number of students working part time.
Therefore, X ~ Bin (5, 0.4).
P (X = 0) = ( 5
0 ) (0.4)0 ¿ = 0.0778
P (X = 1) = (5
1 )(0.4 )1 ¿ = 0.2592
P (X = 2) = ( 5
2 ) (0.4 )2 ¿ = 0.3456
P (X = 3) = ( 5
3 ) (0.4 )3 ¿ = 0.2304
P (X = 4) = ( 5
4 ) (0.4)4 ¿ = 0.0768
P (X = 5) = (5
5 )(0.4 )5 ¿ = 0.01024
1. Therefore, the probability of at most 3 students working part time = P (X = 0) + P
(X = 1) + P (X = 2) + P (X = 3) = 0.0778 + 0.2592 + 0.3456 + 0.2304 = 0.91296.
2. Therefore, the probability of at least 2 students working part time = P (X = 2) + P
(X = 3) + P (X = 4) + P (X = 5) = 0.3456 + 0.2304 + 0.0768 + 0.01024 = 0.5853.
3. Therefore, the probability that less than 3 students work part time = P (X = 0) + P (X = 1)
+ P (X = 2) = 0.0778 + 0.2592 + 0.3456 = 0.6826.
Therefore, the probability of the students working part time = 0.4
Let X be the number of students working part time.
Therefore, X ~ Bin (5, 0.4).
P (X = 0) = ( 5
0 ) (0.4)0 ¿ = 0.0778
P (X = 1) = (5
1 )(0.4 )1 ¿ = 0.2592
P (X = 2) = ( 5
2 ) (0.4 )2 ¿ = 0.3456
P (X = 3) = ( 5
3 ) (0.4 )3 ¿ = 0.2304
P (X = 4) = ( 5
4 ) (0.4)4 ¿ = 0.0768
P (X = 5) = (5
5 )(0.4 )5 ¿ = 0.01024
1. Therefore, the probability of at most 3 students working part time = P (X = 0) + P
(X = 1) + P (X = 2) + P (X = 3) = 0.0778 + 0.2592 + 0.3456 + 0.2304 = 0.91296.
2. Therefore, the probability of at least 2 students working part time = P (X = 2) + P
(X = 3) + P (X = 4) + P (X = 5) = 0.3456 + 0.2304 + 0.0768 + 0.01024 = 0.5853.
3. Therefore, the probability that less than 3 students work part time = P (X = 0) + P (X = 1)
+ P (X = 2) = 0.0778 + 0.2592 + 0.3456 = 0.6826.
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

6STATISTICS (STAT 101)
Answer 2
Part a
1. P(z < 2.0) = 0.9772
2. P(z > -1.88) = 1 – P(z < -1.88) = 1 – (1 – P(z < 1.88)) = P(z < 1.88) = 0.9699
3. P(-1.18 < z < 2.1) = P(z < 2.1) – P(z < -1.18) = P(z < 2.1) – (1 – P(z < 1.18)) = P(z < 2.1)
+ P(z < 1.18) – 1 = 0.9821 + 0.8810 – 1 = 0.8631.
Part b
Answer 2
Part a
1. P(z < 2.0) = 0.9772
2. P(z > -1.88) = 1 – P(z < -1.88) = 1 – (1 – P(z < 1.88)) = P(z < 1.88) = 0.9699
3. P(-1.18 < z < 2.1) = P(z < 2.1) – P(z < -1.18) = P(z < 2.1) – (1 – P(z < 1.18)) = P(z < 2.1)
+ P(z < 1.18) – 1 = 0.9821 + 0.8810 – 1 = 0.8631.
Part b
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

7STATISTICS (STAT 101)
Answer 3
Part a
Answer 3
Part a

8STATISTICS (STAT 101)
Part b
Sample number (n) = 40
Average playing time (μ) = 51.3 minutes
Standard deviation of the playing time (σ) = 5.8 minutes
Therefore, the 95 percent confidence interval = (μ ± t * σ
√ n) = (51.3 ± 2.023 * 5.8
√40 ) = (49.44,
53.16).
Part b
Sample number (n) = 40
Average playing time (μ) = 51.3 minutes
Standard deviation of the playing time (σ) = 5.8 minutes
Therefore, the 95 percent confidence interval = (μ ± t * σ
√ n) = (51.3 ± 2.023 * 5.8
√40 ) = (49.44,
53.16).
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide
1 out of 9
Related Documents

Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
Copyright © 2020–2025 A2Z Services. All Rights Reserved. Developed and managed by ZUCOL.