Probability and Statistics Assignment: Solutions and Analysis - 2020

Verified

Added on  2022/08/30

|14
|843
|13
Homework Assignment
AI Summary
This document presents a comprehensive solution to a Mathematics assignment focusing on probability and statistics. The assignment covers a range of topics, including conditional probability, calculating probabilities in different scenarios (like the gender of children), and understanding cumulative probability distribution functions. It delves into expected values, variance, and moment-generating functions, demonstrating their application in solving statistical problems. Furthermore, the solution explores the diffusion equation, transition density, and long-run probabilities, providing a complete analysis of the concepts. The assignment is a valuable resource for students studying probability and statistics, offering detailed explanations and step-by-step solutions to enhance understanding and problem-solving skills.
Document Page
Mathematics Assignment:
Student Name:
Instructor Name:
Course Number:
5th January 2020
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Q1i)
Let A and B be the events that the other kid is a girl and one of the kids is a girl respectively.
P (A|B) is the probability of A occurring given that B occurred while P (B) is the probability of B.
A B Is both kids are girls.
P (A|B) = P ( A B)
P( B)
P ( A B ) = 1
2 × 1
2 = 1
4
P (B) = 3
4
P (A|B) = P (A B)
P(B) =
1
4
3
4
= 1
4 × 4
3 =1
3
P (A|B) ¿ 1
3
ii)
Let B and G be the events of being a boy and a girl respectively.
In three births, the possible outcomes are BBB, BBG, BGB, BGG, GBB, GBG, GGB and GGG.
This gives 8 possibilities. Out of the two children already born, one must be a girl. Besides this, the
third child must also be a girl. From the above 8 outcomes, the only outcomes satisfying these two
conditions (Out of the two children already born, one must be a girl and the third child being a girl) are
BGG and GBG. These are 2 outcomes.
P (third being girl given one kid is a girl) = P ( BGGGBG )= 2
8 = 1
4
iii)
P(X=xn|x> x1 )=P ( X=x2 ) + P ( X=x3 ) + P ( X =x4 ) ++ P ( X=xn )
Document Page
P(X= xn| x> x1 )=
n¿2
N
P ( X=xn )=
n¿2
N
Pn
iv)
Cumulative probability distribution function f X ( x ) is given by the relation
f X ( x )=P ( X x )
= f X ( x ) f X ( xε )
= PX ( x ) =P ( x )
For continuous random variable we shall have
FX ( x ) =
x ε
2
x+ ε
2
f X ( t ) dt
P ( x )=Pr ( X (x ε
2 , x + ε
2 ))
Pr ( X ( x ε
2 , x + ε
2 ))=
x ε
2
x+ ε
2
f X ( t ) dt
Let f X ( t ) =t
Pr ( X ( x ε
2 , x + ε
2 ))=
x ε
2
x+ ε
2
t dt
=Pr ( X ( x ε
2 , x + ε
2 ))=( t2
2 )x ε
2
x+ ε
2
Pr ( X ( x ε
2 , x + ε
2 ))=1
2 ( (x+ ε
2 )2
(x ε
2 )2
)
= 1
2 ( x2+ 0.25 ε 2x2+ 0.25 ε2 ) =
=Pr ( X ( x ε
2 , x + ε
2 ))=P ( x ) =
P' ( x )=ε
Document Page
lim
ε 0
Pr ( X (x ε
2 , x+ ε
2 ) )=lim
ε 0
=0
But P' ( x )=ε=0 since ε is a very small value.
lim
ε 0
Pr (X ( x ε
2 , x+ ε
2 ) )=P' ( x )=0Hence shown.
v)
Taking f X ( x ) as the probability density function we have
P(X=|X> a )=
a

f X ( x ) dx
P(X=|X>a )=
a

f X ( x ) dx
Q2i)

0
z
1
2 π e0.5x2
dx
1
2 π
0
z
e0.5 x2
dx
Let u= 1
2 x
dx= 2 xdu
1
2 π
0
z
e0.5 x2
dx
= 1
2 π [ π
2
0
z
2 eu2
π du ]
= 1
2 π × π
2 [
0
z
2 eu2
π du ]
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
=
π
4 π [
0
z
2 eu2
π du ]
= 1
2 [ erf (u) ]0
z
= 1
2 [ erf ( x
2 ) ]0
z
¿ 1
2 erf ( z
2 )+C
C is a constant.
ii)
E (Z |Z< 0 ) =μσ (t)
ϑ (t)
Where ϑ ¿) is the cumulative distribution function.
E (Z |Z> 0 )=μ(μσ (t)
ϑ (t) )=σ (t )
ϑ (t)
When δ =1
E (Z |Z> 0 )=σ (t)
ϑ (t) = (t)
ϑ (t)
E (Z |Z> 0 )=σ (t)
ϑ (t) = (t)
ϑ (t)
E (Z |Z> 0 )= (t )
ϑ (t) =
1
2 π e0.5 x2
1
2 erf ( z
2 )
E (Z |Z> 0 )=
1
2 π e0.5 x2
1
2 erf ( x
2 )
iii)
E (Z |Z< 0 ) =μσ (t)
ϑ (t)
Document Page
Taking σ =1 andμ=0
E (Z |Z< 0 )=μσ (t)
ϑ (t) =0σ ( t)
ϑ (t ) = (t)
ϑ (t)
E (Z |Z< 0 )= (t)
ϑ (t) =
1
2 π e0.5 x2
1
2 erf ( x
2 )
Q3i)
Suppose t= T μ
σ and z= X μ
σ
X=μ+
E (z t ¿=E( μ+ )z t ¿
Simplifying the above expression we get
μE ( 1|z t )+ σE ( z|z t )
= μ

t
( z ) dz+ σ

t
z ( z ) dz
= μ

t
( z ) dz +σ

t
z ( z ) dz
P( z t)
But ( z ) dz=ϑ ' ( z ) dz , P ( z t ) =ϑ (t ) and z ( z ) dz=ϑ' ( z ) dz where ϑ is the cumulative distribution
function.
Hence we shall have
μ

t
( z ) dz +σ

t
z ( z ) dz
P(z t) =
μ

t
ϑ ' ( z ) dzσ

t
( z ) dz
ϑ (t)
= μσ (t )
ϑ (t)
Setting σ =1 and μ=0
μσ (t )
ϑ (t) =01 (t)
ϑ (t ) = (t)
ϑ (t)
However we from calculus that
Document Page

a
b
F' ( z ) dz=F ( b ) F (a)
(t )
ϑ (t) = ( b ) (a)
ϑ ( b )ϑ (a)
= [ ( b ) (a) ]
ϑ ( b )ϑ (a)
= ( a ) (b)
ϑ ( b ) ϑ ( a)
ii)
Suppose z= X μ
σ
When x=0
X= μ+
E (X¿ X > 0¿=E( μ+ )
¿ E ( μ+ )=E ( μ¿+ σE(Z ) )
But E ( μ )=μ and also from Z= Xμ
σ When x=0 we get Z=μ
σ
E ( μ¿+ σE(Z ) )=μ+ σE(Z)
E (X¿ X > 0¿=μ+ σE(Z Z > μ
σ )
iii)
E( Z )=
ϑ Where ϑ is the cumulative distribution function.
E(X) = μ ( 12ϑ ( μ
σ ) +2 σ ( μ
σ ) )
E(X) = ( μ2 μϑ ( μ
σ ) +2 σ ( μ
σ ) )
Dividing each term of the right hand side by ϑ we obtain
( μ
ϑ 2 μϑ
ϑ ( μ
σ ) + 2
ϑ σ ( μ
σ )
)
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
μ ( 1
ϑ +2 ( μ
σ ))+¿ 2μE( Z)
But ( 1
ϑ +2 ( μ
σ ) )=1 and 2 μ=σ
μ ( 1
ϑ +2 ( μ
σ ))+¿ 2μE( Z)=μ(1)+¿ σE (Z )
=μ+¿ σE (Z )
E(X) = μ ( 12ϑ ( μ
σ ) +2 σ ( μ
σ ) )=μ+¿ σE (Z ) hence
E(X) = μ ( 12ϑ ( μ
σ ) +2 σ ( μ
σ ) )
Var(X) =E ( X2 ¿¿ ¿
Var(X) =μ2
(12ϑ (μ
σ )2
+2 σ ( μ
σ )
2
)
(μ (12 ϑ (μ
σ )+2 σ ( μ
σ )) )2
Q4i)
Y= ex
Let the median be m.
0.5=
0
m
ex dx
0.5=[ ex ]0
m
0.5=eme0
0.5=em1
1.5=em
Introducing natural logarithm on both sides
ln 1.5=ln em
0.4055=m
Median ym=0.4055
ii)
Document Page
y=ex
f X ( x ) =f Y ( y)x=lny ¿ dx
dy ¿x=lny ¿
=f Y ( y )=f X ( lny ) . 1
y
= f (lny)
y
The mode of an exponential has mode of 0.
Taking μ as the mode we obtain
f (ln μ)=f (ln 0)=
f ' ( lnμ ) = 1
μ = 1
0 =
Hence
f ' ( ln μ ) =f (ln μ)
iii)
The factor 1
2 π in the above expression is makes it possible to have a total area under the curve to be
1.On the other hand, 1
2 in the power will make the distribution to have a variance of 1 and hence a
standard deviation of 1.
Suppose that x is a random variable. Then the expected value of etx is taken as the moment generating
function of y. With normal distribution f, mean μ and deviation σ , the moment generating function M (t)
can be determined as follows.
M(t)=E(e yx ¿=
´
f ( ¿ )=eut e
1
2 σ2
=eμ + 1
2 σ2
Setting t=1
eμ + 1
2 σ (1 )2
=eμ + 1
2
iv)
Document Page
E(Y) =eμ + 1
2 σ2
Setting σ =1 andμ=0
E(Y) =e0+ 1
2 =e
1
2 =1.649
For a normal distribution the median ym is 0 because it is equal to the mean.
ym=0
The mode μ=0
μ< ym < E (Y )
Q5i)
Let u ( x ,t )= ( x , t )= 1
2 π e
x2
2 t
1
2

x ( 1
2 π e
x2
2 t
)= 1
2 ( 1
2 erf ( L
8 t ) )
= 1
4 ( erf ( L
8 t ))
1
4

x (erf ( L
8 t ) )=
τ [ 2
3 , π x2
( 8 ) ( πt )1.5 ]x
4
3
3 3
π
+ C
1
2
2
y2 u ( x ,t ) =
τ [ 2
3 , π x2
( 8 ) ( πt ) 1.5 ] x
4
3
3 3
π
+ C
1
2

t ( 1
2 π e
x2
2 t
)=
τ [ 2
3 , π x2
( 8 ) ( πt )1.5 ]x
4
3
3 3
π + C
Therefore ( x , t ) is a solution to the diffusion equation.
ii)
Since t=0 then


g ( x ) ( x , 0 ) dx=0
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
iii)
Q(x ,t )= 1
2 πt e
x2
2 t
When x=1
Q(1 , t )= 1
2 πt e
1
2 t
t 1/10 1/100 1/1000 1/10000
Q(1,t) 8.5×103 7.7× 1022 0 0
As t becomes small the value of Q (x, t) approaches 0.
This is evident from the graph drawn below.
0 0.02 0.04 0.06 0.08 0.1 0.12
0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
graph of Q(x,t) against time
Time
Q(x,t)
iv)
δ ( x ) =lim
t 0
( x , t )=0
Since δ ( x ) =0 we have
Document Page



g ( x ) δ ( x ) dx=0
v)
V(x, t) =1+ 2
L
n=1

e
2 n2 π2
L2
cos 4 n2 π2
L2 x
lim
t
v ( x , t ) =1+ 2
L (0) cos 2
L x=1
Long run transition density is 1.
vi)
Long run probability is given by

0
L
2
1
2 πt e
x2
2t dx=¿ 1
2 πt
t
2 erf ( L
21.5 t ) ¿
= 1
2 πt
t
2 erf ( L
8 t )
= 1
2 erf ( L
8 t )
vii)
The term with the largest magnitude is t.
Q6i)
d Xt =μ Xt dt +σd Zt
Let f ( xt , t)=xt eθt
d f (xt , t)=θ xt eθt dt+ eθt d xt
=eθt θμdt +σ eθt d W t
By taking integral from 0 to t we obtain
xt eθt=x0 +
0
t
eθs θμds+
0
t
1
= x0 eθt+μ ( 1eθt ) +σ
Document Page
Taking x0=0 and substituting in the above equation we have
xt =¿ (0)eθt + μ ( 1eθt ) + σ
xt =¿ μ ( 1eθt ) + σ
ii)
d Xt =b( Xt )dt + σ (X ¿ ¿t )d W t ¿
Let y =p (t , x , y )
By taking the conditional density of Xt given that X 0=x and also that of Xt + s given X s=x.We shall
have
L(θ)=
i=1
n
p(tit i1¿ , xi1 , xi ;θ)¿
iii)
p (x, t)= 1
2 πv (t) e
1
2
x2
v (t )
V (t) = σ2
2 μ ( 1e2 μt )
At the start t=0 hence
V (0) = σ2
2 μ ( 1e2 μt )= σ 2
2 μ ( 1e0 ) =0 and also
p (x, t)= 1
2 πv (0) e
1
2
x2
v(0) = 1
2 π ( 0) e=0
1
2 σ2
x2
2
p ( x , t )+ μ
x ( xp(x , t) )= 1
2 σ 2
x2
2
( 0 )+ μ
x ( x (0) )
=0+0=0

t ( p (x , t) ) =
t ( 0¿ )=0
1
2 σ2
x2
2
p ( x , t )+ μ
x ( xp(x , t) )=
t ( p (x , t) ) =0
Therefore p ( x , t ) satisfies the above equation.
iv)
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
lim
t 0
p (x , t)=lim
t 0
1
2 πv (t) e
1
2
x2
v (t )
¿ lim
t 0
1
2 πv (0) e
1
2
x2
v (0 )=lim
t 0
1
2 π (0) e
1
2
x2
(0)=0
lim
t
p (x , t )=lim
t
1
2 πv ( ) e
1
2
x2
v()
But V ( ) = σ2
2 μ ( 1e2 μ )= σ 2
2 μ ( 1e )
¿ σ2
2 μ ( 1e ) = σ2
2 μ ( 10 ) = σ2
2 μ
lim
t
p (x , t)= 1
2 π ( σ2
2 μ )
e
1
2
x2
( σ2
2 μ )
= 1
π ( σ 2
μ )
e
x2
( σ 2
μ )
Suppose σ2
μ =k then we shall have
1
π k e
x2
( k )
lim
t
p (x , t )= 1
π k e
x2
( k )
In the long run the process drifts towards the mean.
chevron_up_icon
1 out of 14
circle_padding
hide_on_mobile
zoom_out_icon
logo.png

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]