Stress Analysis Assignment: Point A and B, Spring Semester

Verified

Added on  2019/09/21

|4
|197
|171
Homework Assignment
AI Summary
This assignment provides a detailed analysis of stress at points A and B. It includes calculations of shear stress, principal stress, and an assessment of yielding conditions. The solution explains the determination of stress values and whether yielding occurs based on the given parameters. The assignment's content is specifically designed to help students understand the application of stress analysis principles. Desklib provides this assignment to aid students in their studies.
Document Page
Answer (2):
Given data:
d=0.2m
L=1 m
T =20 π
Stress at point (A)
Fx=0
V x20 π =0
Fy=0
V y=20 π
My =0
σ yb= N
A = 20
0.1 π = 200
π =63.66
σ y= M y
I
I = π R4
4 = π ( 0.1 ) 4
4 =0.25 π x 104 m4
y= 4 R
3 π
σ yb= 20 π x 1 x 4 x 0.1
3 π x 0.25 π x 104
¿ 3.3953 05 x 104
σ y=63.66+33953.05
σ y=34016.71
Find, shear stress
τ By=V y Q
I t
Q= A1 y1
¿ π ( 0.1 ) 2
( 4 R
3 π )
¿ π ( 0.1 ) 2
( 4 x 0.1
3 π )
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Q=13.33 x 104
I = π R4
4 = π ( 0.1 ) 4
4 =0.25 π x 104 m4
τ A = 20 π x 13.33 x 104
0.25 π x 104 x 0.2
τ A =5332 kN /m2
Answer (B)
Yielding not occur at point “A”.
τ max=± ( σ x +σ y
2 )2
+ τxy
2
¿ ( 80000+0
2 )2
+ 53322
¿ 40353.81 kN
m2
¿ 40.353 Mpa
As per given condition if maximum shear stress greater then yield stress then yield occur, but value
of maximum shear stress is lower than yield stress therefore yielding not occur at point “B”
Principal stress at point A,
σ 1,2=( σ x +σ y
2 )± ( σ x +σ y
2 )2
+ ( τxy )2
¿ 34016.71+ 0
2 ± ( 34016.71+0
2 )
2
+ ( 5332 ) 2
¿ 17008.355 ±34432.060
σ A= 51440.4153 kN
m2 (Tensile)
σ A=17423.705 kN
m2 (Compressive)
Answer (c)
Yielding not occur at point “A”.
τ max=± ( σ x +σ y
2 )2
+ τxy
2
Document Page
¿ ( 34016.71+0
2 )2
+53322
¿ 34432.060
¿ 34.432 Mpa
As per given condition if maximum shear stress greater then yield stress then yield occur, but value
of maximum shear stress is lower than yield stress therefore yielding not occur at point “B”
Stress at the point (B)
Fy=0
V y(20 π )=0
My=0 ; Mx20 π ( 1 ) =0
Mx=20 π
Fx=0
V x=0
Fz=0
V Z =0
Shear stress at point B,
τ B= V y Q
I t
I = π R4
4 = π ( 0.1 ) 4
4 =0.25 π x 104 m4
Q= A1 y1
¿ π ( 0.1 ) 2
( 4 R
3 π )
¿ π ( 0.1 ) 2
( 4 x 0.1
3 π )
Q=13.33 x 104
τ B= 20 π x 13.33 x 104
0.25 π x 104 x 0.2
¿5332 kN /m2
σ B= M y
I = 20 π x ( 1 ) x ( 0.1 )
0.25 π x 104 =80,000 kN /m2
Document Page
σ y=σ Z=τxz =τ yz=0
Answer (B)
Principal stress at point B,
σ 1,2=( σ x +σ y
2 )± ( σ x +σ y
2 )2
+ ( τxy )2
¿ 80,000+ ¿
2 ± ( 80000+0
2 )2
+ ( 5332 )2 ¿
σ 1,2=40000 ± 40353.81
σ 1,2=80353.81(Tensile)kN /m2
σ 1,2=353.81 ( Compressive )
Answer (c)
Yielding not occur at point “A”.
τ max=± ( σ x +σ y
2 )2
+ τxy
2
¿ ( 80000+0
2 )2
+ 53322
¿ 40353.81 kN
m2
¿ 40.353 Mpa
As per given condition if maximum shear stress greater then yield stress then yield occur, but value
of maximum shear stress is lower than yield stress therefore yielding not occur at point “B”
chevron_up_icon
1 out of 4
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]