Analyzing Dynamics and Solutions in Theoretical Physics Models

Verified

Added on  2020/04/01

|22
|604
|52
Homework Assignment
AI Summary
The homework assignment involves a detailed exploration of several advanced concepts in theoretical physics. It starts by examining particle motion through the lens of Hamiltonian and Lagrangian mechanics, emphasizing energy conservation principles. The assignment further delves into solving heat equations with specific boundary conditions, leveraging Fourier series for convergence analysis. Additionally, it addresses electromagnetic field dynamics in special relativity contexts, using trial trajectories to explore gravitational effects. Key components include deriving solutions under various constraints and analyzing theoretical implications through Newtonian mechanics and Feynman's proposals. The comprehensive approach offers insights into the fundamental principles governing these physical systems.
Document Page
Solution 1
a) As be definitions
L=KEPE
L= 1
2 m ˙x1
2 + 1
2 m ˙x2
2 1
2 K ( x1
2+ x2
2
)
Now momentum is
p1= L
˙x1
=m ˙x1
p2= L
˙x2
=m ˙x2
As
L= 1
2 m ˙xI ˙x Je (φ ˙xJ A j)
So
pi= L
˙xi
=
˙xi ( 1
2 m ˙xI ˙xJe ( φ ˙xJ A j ) )
pi= 1
2 m ˙¿ 2 xI e (01A j)
pi=m ˙xi+e A j ¿
b) The conservation is
The second reads
pi=m ˙xi+ e Ai
d
dt pi= d
dt ( m ˙xi +e Ai ) =0
d
dt ( m ˙xi )=0
That x component of momentum is conserved.
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
c)
H= ˙x j
dL
d ˙x j
L
L= 1
2 m ˙x j ˙x je ( ˙x j A j)
So in
H= ˙x j
dL
d ˙x j
L
H= ˙x j
d
d ˙x j ( 1
2 m ˙x j ˙x je ( ˙x j A j ) ) ( 1
2 m ˙x j ˙x j e ( ˙x j A j ) )
H= ˙x j (m ˙x j d
d ˙x j
e ( ˙x j A j ) )( 1
2 m ˙x j ˙x je ( ˙x j A j ) )
H= ( p j d
d ˙x j
e ( ˙x j A j ) )( 1
2 p je ( ˙x j A j ))
H= ( 1
2 pj d
d ˙x j
e ( ˙x j A j )) + ( e ( ˙x j A j ) )
H= ( 1
2 m ( p je A j )2+ e )
d)
H= ( 1
2 m ( p je A j )2+ e )
Now
H= ˙x j
dL
d ˙x j
L
Also
p1= L
˙x1
=m ˙x1
Document Page
H= ˙x j pimx
Hence
˙x j pimx=( 1
2 m ( p je A j )
2 +e )
˙x j pimx=( 1
2 m ( p j
2 +e2 A j
22 p j e A j )+e )
˙x j pimx=( 1
2 m ( p j
2 +e2 A j
2¿ )+e p j e A j
m )
˙x j pimx=( 1
2 m ( p j
2 +e2 A j
2¿ )+e p j e A j
m )
So on comparison
˙xi= 1
m ( pi e Ai )
˙pi= e
m ( p je A j ) A j
x j
e
xi
e) As we can see that there should be balancing momentum for pz component of the system.
The subtraction of kinetic and potential energy is not conservative in z direction. Mainly
because of no balancing component available and hence this is not conservative.
f)
From
˙xi= 1
m ( pi e Ai )
˙pi= e
m ( p je A j ) A j
x j
e
xi
Here
Bey=e Ai
So now
Document Page
˙x= 1
m ( px+ Bey )
˙px=Ee
˙py=Be ˙x
˙y= py
m
g) Magic velocity
By law of conservation
1
2 B v2= 1
2 Ev
Bv=E
v= E
B
h) In case if E>cB
In this part we have higher component of em wave than velocity of light. This comes under
uncertainty.
This is physically not possible to have this condition.
Solution 2
a) Given
h ( t )=
n=

f ( x +n )
now as we know that series converges to the point were summation and avering is given.
Using standard fourier formula, we can see period is 1.
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
b)
u
t =2 2 u
x2
u ( 0 , t ) =u ( 5 ,t ) =0
u ( x , 0 )=f ( x )=4 sin ( πx )+ 3sin ( 2 πx ) 0 x 5
Now
Now assuming
u( x , t)= X (x) T ( t)
Now
X ( x ) T ' ( t ) =2 X' ' ( x ) T ( t )
X' '( x )
X ( x ) =1
2
T ' ( t )
T ( t )
Now assuming the independency of both the sides we have below condition for any given
constant say K.
X' ' ( x )
X ( x ) =K
1
2
T ' ( t )
T ( t ) =K
So solution for above two variables given non zero K
Document Page
X ( x ) =l1 e K x+l2 e K x
T ( t )=l3 e2 Kt
Hence finally we have
u ( x , t )=X ( x ) T ( t )
u ( x , t ) =(l1 e K x+ l2 e K x )l3 e2 Kt
c) Heat equation
Now for above equation when we apply boundary conditions
u ( x , t )= An sin (
L x )e2 π 2 n2 t
L2
Here
An =2i l1 l3
K=
L i
Now heat equation satisfies the below equation
u ( x , t ) =
n=1

An sin (
L x ) e2 π 2 n2 t
L2
Considering
Document Page
u ( x , 0 )=f ( x )=4 sin ( πx )+ 3sin ( 2 πx ) 0 x 5
Now
An = 2
L
0
L
¿ ¿
An =2
5
0
5
¿ ¿
An =2
5
0
5
(4 sin ( πx ) sin (
5 x ) +3 sin ( 2 πx ) sin (
5 x )) dx
An =2
5
0
5
(2 (cos (πx
5 x )cos( πx+
5 x) ))dx + 2
5
0
5
3
2 ( (cos (2 πx
5 x )cos(2 πx+
5 x) ))dx
An =2
5
0
5
(2 ( cos ( πx
5 x ) )) dx + 2
5
0
5
(2 (cos (πx +
5 x )) ) dx+ 2
5
0
5
( 3
2 ( cos ( 2 πx
5 x )) ) dx+ 2
5
0
5
3
2 ( ( cos (2 π
An =2
5
0
5
(2 ( cos ( πx
5 x ) )) dx + 2
5
0
5
(2 (cos (πx +
5 x )) ) dx+ 2
5
0
5
( 3
2 ( cos ( 2 πx
5 x )) ) dx+ 2
5
0
5
3
2 ( ( cos (2 π
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
An =2
5 [ (2 (sin (πx
5 x ) ) )
π
5 ]0
5
+ 2
5 [ (2 (sin (πx+
5 x ) ))
π +
5 ]0
5
+ + 2
5 [ ( 3
2 (sin (2 πx
5 x )) )
2 π
5 ]0
5
+ +2
5 [ ( 3
2 (sin (2 πx +
5 x
2 π +
5
An =2
5 [ (2 ( sin ( 5 π ) ) )
π
5 ]0
5
+ 2
5 [ (2 ( sin (5 π + ) ) )
π +
5 ]0
5
+ +2
5 [ ( 3
2 ( sin ( 10 π ) ) )
2 π
5 ]0
5
+ +2
5 [ ( 3
2 ( sin ( 10 π ) ) )
2 π +
5 ]0
5
An = (2 ( sin (5 π ) ) )
π
5
+ (2 ( sin ( 5 π + ) ) )
π +
5
+ ( 3
2 ( sin ( 10 π ) ))
2 π
5
+ ( 3
2 ( sin ( 10 π ) ) )
2 π +
5
Hence we have
An = (2 ( sin (5 π ) ) )
π
5
+ (2 ( sin ( 5 π + ) ) )
π +
5
+ ( 3
2 ( sin ( 10 π ) ))
2 π
5
+ ( 3
2 ( sin ( 10 π ) ) )
2 π +
5
u ( x , t ) =
n=1

An sin (
L x ) e2 π 2 n2 t
L2
d)
Document Page
Now given
c=1 , L=2
f ( x ) = { x if 0 x 1
2 x if 1 x 2
Using previous question solution
u ( x , t ) =
n=1

An sin (
L x ) e2 π 2 n2 t
L2
An = 2
L
0
L
f ( x ) sin (
L x )dx
We have using f(x)
An = 2
L
0
L
f ( x ) sin (
L x )dx
An =
{ 2
L
0
L
f ( x ) sin (
L x ) dx if 0 x 1
2
L
0
L
f ( x ) sin (
L x ) dx if 1 x 2
Keeping f(x) values
An =
{ 2
L
0
L
( x ) sin (
L x )dx if 0 x 1
2
L
0
L
( 2x ) sin (
L x )dx if 1 x 2
Document Page
e)
Again based on constants
An =
{ 2
2
0
2
( x ) sin (
2 x )dx if 0 x 1
2
2
0
2
( 2x ) sin (
2 x )dx if 1 x 2
An =
{
0
2
( x ) sin (
2 x ) dx if 0 x 1

0
2
( 2x ) sin (
2 x ) dx if 1 x 2
An =
0
2
( x ) sin (
2 x ) dx
An =x
0
2
sin (
2 x )dx + 1

2

0
2
cos (
2 x )dx
An =x

2
[ cos (
2 x ) ]0
2
+ 1
(
2 )
2 [ sin (
2 x ) ]0
2
An =x

2
( sin ( ) 1 ) + sin ( )
(
2 ) 2
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
f)
An =
0
2
( 2 ) sin (
2 x ) dx
0
2
( x ) sin (
2 x ) dx
An =
0
2
( 2 ) sin (
2 x )dx
(x
0
2
sin (
2 x )dx + 1

2

0
2
cos (
2 x )dx
)
An =2 [cos (
2 x ) ]0
2

(x

2
[cos (
2 x ) ]0
2
+ 1
(
2 )2 [sin (
2 x ) ]0
2
)
An =2 ( sin ( ) 1 ) + x

2
( sin ( ) 1 ) sin ( )
(
2 )
2
Hence we have
An =
{ x

2
( sin ( )1 ) + sin ( )
(
2 )2 if 0 x 1
2 ( sin ( )1 ) + x

2
( sin ( )1 ) sin ( )
(
2 )2 if 1 x 2
Final solution is
Document Page
u ( x , t ) =
n=1

An sin (
L x ) e2 π 2 n2 t
L2
g)
Now considering
u ( x , y )= X ( x ) Y ( y )
Plugging this in boundary conditions
X' ' K1 X=0
Y ' 'K2 Y =0
Thus we have
X a ( x )=sin ( μa x ) μa=
1 K1=μa
2
Y b ( y ) =sin ( vb x ) vb=
1 K2=vb
2
This results in
u ( x , y )= X ( x ) Y ( y )
u ( x , y ) =sin ( μa x ) sin ( vb x )
Solution 3
Given
u
t = 2 u
x2
chevron_up_icon
1 out of 22
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]