Solving Trigonometric Equations and Identities, Math 22 Assignment
VerifiedAdded on 2022/09/24
|34
|2379
|19
Homework Assignment
AI Summary
This document presents a comprehensive solution set for a trigonometry assignment, likely for a university-level mathematics course (Math 22). The solutions cover a wide range of trigonometric concepts, including proving identities, solving trigonometric equations, and analyzing trigonometric functions. The assignment addresses proving trigonometric identities such as (2 - 2sinθcosθ = 1), (tanθcosecθ = secθ), and (cosecθ(1-cosθ)(1+cosθ) = sinθ). It also provides solutions for solving trigonometric equations, including finding general solutions and solutions within specified ranges. Graphical analysis is also included, with plots of functions like y = sec x and y = cosec x. The document also includes inequality problems and provides detailed step-by-step solutions and explanations for each problem, making it a valuable resource for students studying trigonometry.

MATHEMATICS 1
ENGINEERING MATHEMATICS
by Student’s Name
Course Name
Professor’s Name
University Name
City, State
Date
ENGINEERING MATHEMATICS
by Student’s Name
Course Name
Professor’s Name
University Name
City, State
Date
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

MATHEMATICS 2
QUESTION 3
a) (sin θ+cos θ ¿2 -2 sin θ cos θ = 1
Solution
Manipulating left side
(sin θ+cos θ ¿2 -2 sin θ cos θ
Apply perfect square formula: (a +b)2 = a2+2ab+b2
a = cos θ and b = sin θ
= cos2θ + 2cos θ sin θ + sin2θ
= cos2θ + 2cos θ sin θ + sin2θ -2cos θ sin θ
Add similar elements: 2cos θ sin θ -2cos θ sin θ =0
= cos2θ + sin2θ
Use the following identity cos2x + sin2x = 1
Hence cos2θ + sin2θ = 1
∴ (sin θ+cos θ ¿2 -2 sin θ cos θ = 1 is True
b) tanθ cosecθ = secθ
Solution
Manipulating the left side
tanθ cosecθ
Using the basic trigonometric identity cosec x = 1
sin x
QUESTION 3
a) (sin θ+cos θ ¿2 -2 sin θ cos θ = 1
Solution
Manipulating left side
(sin θ+cos θ ¿2 -2 sin θ cos θ
Apply perfect square formula: (a +b)2 = a2+2ab+b2
a = cos θ and b = sin θ
= cos2θ + 2cos θ sin θ + sin2θ
= cos2θ + 2cos θ sin θ + sin2θ -2cos θ sin θ
Add similar elements: 2cos θ sin θ -2cos θ sin θ =0
= cos2θ + sin2θ
Use the following identity cos2x + sin2x = 1
Hence cos2θ + sin2θ = 1
∴ (sin θ+cos θ ¿2 -2 sin θ cos θ = 1 is True
b) tanθ cosecθ = secθ
Solution
Manipulating the left side
tanθ cosecθ
Using the basic trigonometric identity cosec x = 1
sin x

MATHEMATICS 3
= tanθ * 1
sinθ
Use the following identity: tan x = sinx
cos x
= sinθ
cos θ * 1
sinθ
Cancel the like terms
= 1
cos θ from identity: 1
cos θ = secθ
= secθ which is true
Therefore tanθ cosecθ = secθ
c) cosecθ(1-cosθ)(1+cosθ) = sinθ
Solution
Manipulating left side
cosecθ(1-cosθ)(1+cosθ)
Use the following identity: cosec x = 1
sin x
= 1
sin θ (1-cosθ)(1+cosθ)
Use the following identity: (1-cosθ)(1+cosθ) = 1-cos2θ
= 1
sin θ (1-cos2θ)
Simplify (1-cos2θ) = sin2θ
= 1
sin θ sin2θ
= tanθ * 1
sinθ
Use the following identity: tan x = sinx
cos x
= sinθ
cos θ * 1
sinθ
Cancel the like terms
= 1
cos θ from identity: 1
cos θ = secθ
= secθ which is true
Therefore tanθ cosecθ = secθ
c) cosecθ(1-cosθ)(1+cosθ) = sinθ
Solution
Manipulating left side
cosecθ(1-cosθ)(1+cosθ)
Use the following identity: cosec x = 1
sin x
= 1
sin θ (1-cosθ)(1+cosθ)
Use the following identity: (1-cosθ)(1+cosθ) = 1-cos2θ
= 1
sin θ (1-cos2θ)
Simplify (1-cos2θ) = sin2θ
= 1
sin θ sin2θ
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

MATHEMATICS 4
= sinθ which is true
Therefore cosecθ(1-cosθ)(1+cosθ) = sinθ
d) cotθ secθ tan θ√ (1−sin2 θ) = 1
Solution
Manipulating left side
cotθ secθ tan θ√(1−sin2 θ)
Simplify
√ (1−sin2 θ) = cosθ
= 1
tanθ * 1
cosθ * tanθ * cosθ
Cancel the like terms
= 1 which is true
Therefore cotθ secθ tan θ √(1−sin2 θ) = 1
e) 1
sec2 θ + 1
cosec2 θ =1
Solution
Manipulating left side
1
sec2 θ + 1
cosec2 θ
Express with sin, cos
Using the basic trigonometric identity cosec x = 1
sin x
= sinθ which is true
Therefore cosecθ(1-cosθ)(1+cosθ) = sinθ
d) cotθ secθ tan θ√ (1−sin2 θ) = 1
Solution
Manipulating left side
cotθ secθ tan θ√(1−sin2 θ)
Simplify
√ (1−sin2 θ) = cosθ
= 1
tanθ * 1
cosθ * tanθ * cosθ
Cancel the like terms
= 1 which is true
Therefore cotθ secθ tan θ √(1−sin2 θ) = 1
e) 1
sec2 θ + 1
cosec2 θ =1
Solution
Manipulating left side
1
sec2 θ + 1
cosec2 θ
Express with sin, cos
Using the basic trigonometric identity cosec x = 1
sin x
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

MATHEMATICS 5
=
1
( 1
sinθ ) 2 +
1
( 1
cosθ )2
Simplify by apply exponent rule and fraction rule
=
1
( 1
cosθ )2 = cos2
θ and
1
( 1
sinθ ) 2 = sin2
θ
= cos2θ + sin2
θ
Use the following identity: cos2θ + sin2
θ = 1
= 1 two sides could take the same form
Hence 1
sec2 θ + 1
cosec2 θ =1
f) secθ – cosθ = sinθtanθ
Solution
Manipulating left side
secθ – cosθ
Express with sin, cos
Using the basic trigonometric identity sec x = 1
cos x
= - cos θ + 1
cos θ
Simplify and applying exponent rule
= −cos θcosθ
cos θ + 1
cos θ
Since denominators are equal, combine the fraction:
=
1
( 1
sinθ ) 2 +
1
( 1
cosθ )2
Simplify by apply exponent rule and fraction rule
=
1
( 1
cosθ )2 = cos2
θ and
1
( 1
sinθ ) 2 = sin2
θ
= cos2θ + sin2
θ
Use the following identity: cos2θ + sin2
θ = 1
= 1 two sides could take the same form
Hence 1
sec2 θ + 1
cosec2 θ =1
f) secθ – cosθ = sinθtanθ
Solution
Manipulating left side
secθ – cosθ
Express with sin, cos
Using the basic trigonometric identity sec x = 1
cos x
= - cos θ + 1
cos θ
Simplify and applying exponent rule
= −cos θcosθ
cos θ + 1
cos θ
Since denominators are equal, combine the fraction:

MATHEMATICS 6
= −cos2 θ+1
cos θ
= 1−cos2 θ
cos θ
Use the following identity: 1−cos2 x = sin2 x
= sin2 θ
cos θ
Use the following identity: sinx
cos x = tan x
= sin θtanθ which is true
Hence secθ – cosθ = sin θtanθ
g) sin2θ + 2cos2θ = 2- sin2θ
Solution
Manipulating left side
sin2θ + 2cos2θ
Use the following identity: cos2 x = 1- sin2 x
= sin2θ + 2(1- sin2 θ)
Expand: 2(1- sin2 θ)
= 2- 2 sin2 θ
= sin2θ + 2- 2 sin2 θ
Simplify and group like terms
= sin2θ - 2sin2 θ+2
= −cos2 θ+1
cos θ
= 1−cos2 θ
cos θ
Use the following identity: 1−cos2 x = sin2 x
= sin2 θ
cos θ
Use the following identity: sinx
cos x = tan x
= sin θtanθ which is true
Hence secθ – cosθ = sin θtanθ
g) sin2θ + 2cos2θ = 2- sin2θ
Solution
Manipulating left side
sin2θ + 2cos2θ
Use the following identity: cos2 x = 1- sin2 x
= sin2θ + 2(1- sin2 θ)
Expand: 2(1- sin2 θ)
= 2- 2 sin2 θ
= sin2θ + 2- 2 sin2 θ
Simplify and group like terms
= sin2θ - 2sin2 θ+2
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

MATHEMATICS 7
Add similar elements:sin2θ - 2sin2 θ = - sin2θ
= - sin2θ + 2
= 2- sin2θ which is true
Therefore sin2θ + 2cos2θ = 2- sin2θ
h) tanθ + cotθ = 1
sin θcosθ
Solution
Manipulating the left side
tanθ + cotθ
Express with sin, cos:
= cosθ
sin θ + tanθ
Using the basic trigonometric identity tan x = sin x
cos x
= cosθ
sin θ + sin θ
cos θ
Simplify above
cosθ
sin θ = cos2 θ
sin θcosθ and sin θ
cos θ = sin2 θ
sin θcosθ
= cos2 θ
sin θcosθ + sin2 θ
sin θcosθ
Since the denominator are equal, combine the fraction
= cos2 θ+sin2 θ
sin θcosθ
Add similar elements:sin2θ - 2sin2 θ = - sin2θ
= - sin2θ + 2
= 2- sin2θ which is true
Therefore sin2θ + 2cos2θ = 2- sin2θ
h) tanθ + cotθ = 1
sin θcosθ
Solution
Manipulating the left side
tanθ + cotθ
Express with sin, cos:
= cosθ
sin θ + tanθ
Using the basic trigonometric identity tan x = sin x
cos x
= cosθ
sin θ + sin θ
cos θ
Simplify above
cosθ
sin θ = cos2 θ
sin θcosθ and sin θ
cos θ = sin2 θ
sin θcosθ
= cos2 θ
sin θcosθ + sin2 θ
sin θcosθ
Since the denominator are equal, combine the fraction
= cos2 θ+sin2 θ
sin θcosθ
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

MATHEMATICS 8
Use the following identity: cos2 x +sin2 x = 1
= 1
sin θcosθ which is true
Therefore tanθ + cotθ = 1
sin θcosθ
QUESTION 4
a) sec x = 2
Solution
sec x = 2, 0 ≤ x ≤ 3600
General solution for sec x = 2
x=600 +3600 n, x=3000 +3600 n
Solutions for range 0 ≤ x ≤ 3600
x=600, x=3000
b) cot x = √3
Solution
cot x = √3, 0 ≤ x ≤ 3600
General solution for sec x = √3
x=300 +1800 n,
Solutions for range 0 ≤ x ≤ 3600
Use the following identity: cos2 x +sin2 x = 1
= 1
sin θcosθ which is true
Therefore tanθ + cotθ = 1
sin θcosθ
QUESTION 4
a) sec x = 2
Solution
sec x = 2, 0 ≤ x ≤ 3600
General solution for sec x = 2
x=600 +3600 n, x=3000 +3600 n
Solutions for range 0 ≤ x ≤ 3600
x=600, x=3000
b) cot x = √3
Solution
cot x = √3, 0 ≤ x ≤ 3600
General solution for sec x = √3
x=300 +1800 n,
Solutions for range 0 ≤ x ≤ 3600

MATHEMATICS 9
x=300, x=2100
c) cosec x = √ 2
Solution
cosec x = √ 2, 0 ≤ x ≤ 2π
cosec x can’t be greater than one for real solutions
No solution for x ∈ R
d) sec x = 1.2
Solution
sec x = 1.2, 0 ≤ x ≤ 3600
General solution for sec x =1.2
sec x=a → x = arcsec a + 3600 n, x= 3600 –arcsec a + 3600 n
x = arcsec 1.2 + 3600 n, x= 3600 –arcsec 1.2 + 3600 n
Solutions for range 0 ≤ x ≤ 3600
x=0.58568, x=5.69749
e) cot x =3
Solution
cot x = 3, 0 ≤ x ≤ 3600
General solution for cot x =3
cot x=a → x = arccot a + 1800 n
x = arccot 3 + 1800 n
x=300, x=2100
c) cosec x = √ 2
Solution
cosec x = √ 2, 0 ≤ x ≤ 2π
cosec x can’t be greater than one for real solutions
No solution for x ∈ R
d) sec x = 1.2
Solution
sec x = 1.2, 0 ≤ x ≤ 3600
General solution for sec x =1.2
sec x=a → x = arcsec a + 3600 n, x= 3600 –arcsec a + 3600 n
x = arcsec 1.2 + 3600 n, x= 3600 –arcsec 1.2 + 3600 n
Solutions for range 0 ≤ x ≤ 3600
x=0.58568, x=5.69749
e) cot x =3
Solution
cot x = 3, 0 ≤ x ≤ 3600
General solution for cot x =3
cot x=a → x = arccot a + 1800 n
x = arccot 3 + 1800 n
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

MATHEMATICS 10
Solutions for range 0 ≤ x ≤ 3600
x= arccot 3, x= arccot 3 + 1800 n
Solution in decimal form
x=0.3215, x=0.32175…..+180
f) cosec x =1
Solution
cosec x =1, 0 ≤ x ≤ 2π
General solution for cosec x =1
Solve ec x = 0 + 2πn
x= 2 πn
ec
Solutions for range 0 ≤ x ≤ 2π
No solution for x ∈ R
QUESTION 5
a) cosecθ- sinθ = cotθ cosθ
Solution
Manipulating left side
cosecθ - sinθ
Using the basic Trigonometric identity cosec x = 1
sin x
= 1
sin θ – sinθ
Solutions for range 0 ≤ x ≤ 3600
x= arccot 3, x= arccot 3 + 1800 n
Solution in decimal form
x=0.3215, x=0.32175…..+180
f) cosec x =1
Solution
cosec x =1, 0 ≤ x ≤ 2π
General solution for cosec x =1
Solve ec x = 0 + 2πn
x= 2 πn
ec
Solutions for range 0 ≤ x ≤ 2π
No solution for x ∈ R
QUESTION 5
a) cosecθ- sinθ = cotθ cosθ
Solution
Manipulating left side
cosecθ - sinθ
Using the basic Trigonometric identity cosec x = 1
sin x
= 1
sin θ – sinθ
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

MATHEMATICS 11
Simplify above
Since sinθ = sinθsinθ
sin θ
= 1
sin θ – sinθsinθ
sin θ since denominators are equal we combine
= 1−sinθsinθ
sin θ
= 1−sin2 θ
sin θ apply following identity 1-sin2x = cos2x
= cos2 θ
sin θ use the following identity cosx
sinx =cot x
= cosθ cotθ which is true
∴ cosecθ- sinθ = cotθ cosθ is true
b) cos2θ-sin2θ=2 cos2θ-1
Solution
Manipulating left side
cos2θ-sin2θ
Using the following identity factor sin2x =1-cos2x
= - (1- cos2θ) + cos2θ
Distribute parentheses
= -1-(- cos2θ)
Apply minus-plus rule
-(-a)=a, -(a)=-a
Simplify above
Since sinθ = sinθsinθ
sin θ
= 1
sin θ – sinθsinθ
sin θ since denominators are equal we combine
= 1−sinθsinθ
sin θ
= 1−sin2 θ
sin θ apply following identity 1-sin2x = cos2x
= cos2 θ
sin θ use the following identity cosx
sinx =cot x
= cosθ cotθ which is true
∴ cosecθ- sinθ = cotθ cosθ is true
b) cos2θ-sin2θ=2 cos2θ-1
Solution
Manipulating left side
cos2θ-sin2θ
Using the following identity factor sin2x =1-cos2x
= - (1- cos2θ) + cos2θ
Distribute parentheses
= -1-(- cos2θ)
Apply minus-plus rule
-(-a)=a, -(a)=-a

MATHEMATICS 12
= -1+ cos2θ
= -1+ cos2θ + cos2θ
Add similar elements
= -1+2 cos2θ which is true
∴ cos2θ-sin2θ=2 cos2θ-1
c) cosec2 θ+sec2 θ= cosec2 θsec2 θ
Solution
Manipulating left side
cosec2 θ+sec2 θ
= 1
sin 2θ + 1
cos 2 θ
= cos 2 θ+sin 2θ
sin 2 θcos 2 θ = 1
sin 2θcos 2 θθ
= cosec2 θsec2 θ which is true
Therefore cosec2 θ+sec2 θ= cosec2 θsec2 θ
d) sin2 θ
1−cosθ =1+cosθ
Solution
Manipulating left side
sin2 θ
1−cosθ
Using the following identity factor sin2x =1-cos2x
= -1+ cos2θ
= -1+ cos2θ + cos2θ
Add similar elements
= -1+2 cos2θ which is true
∴ cos2θ-sin2θ=2 cos2θ-1
c) cosec2 θ+sec2 θ= cosec2 θsec2 θ
Solution
Manipulating left side
cosec2 θ+sec2 θ
= 1
sin 2θ + 1
cos 2 θ
= cos 2 θ+sin 2θ
sin 2 θcos 2 θ = 1
sin 2θcos 2 θθ
= cosec2 θsec2 θ which is true
Therefore cosec2 θ+sec2 θ= cosec2 θsec2 θ
d) sin2 θ
1−cosθ =1+cosθ
Solution
Manipulating left side
sin2 θ
1−cosθ
Using the following identity factor sin2x =1-cos2x
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide
1 out of 34
Related Documents

Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
Copyright © 2020–2025 A2Z Services. All Rights Reserved. Developed and managed by ZUCOL.