1. Question 1. Properties of response variable in a log

Verified

Added on  2022/11/13

|4
|261
|57
AI Summary
tabler-icon-diamond-filled.svg

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
1
Question 1
i) Properties of response variable in a logistic model
(a) It is a Bernoulli distribution
(b) It can be any distribution over the interval (0,1)
ii) The logistic function
iii) False
Question 2
i) False
ii) False
iii) Linear regression model
a. False
b. True
c. False
iv) X ^Bis unbiased estimator of XB
v) The e stimate ^δ2=¿Y X ^β||2
2 of δ2 satisfies ( n p ) ^δ2
δ2 Xn p
2
vi) Regressionn function f ( x ) of Y =a ¿
Question 3
i) Jeffery’s prior, π j ( λ )=2
ii) Posterior distribution, $ $ π ( I λ X1 ,, X10 ) =¿ Θ1α ={θ : p(θY ) }
iii) Mean of the posterior distribution, λ
Bayes
=1α
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
2
iv) Maximum-a-posterior (Map) estimator, λ
MAP
=βnexp( iyiβ )
v) a=3.222, b=0.978
vi) Comparison of λ
MAP
and λ
Bayes
λ
Bayes
> λ
MAP
because of posterior distribution is skewed to the left
vii) Neither π1 λ nor πJ λ is proper
viii) R is a unique Bayesian confidence region of level 5%
ix) Yes, because our posterior distribution is symmetric and we chose a and b such that (, a )
and ( b , )have an equal 5% Probability.
x) λ
MLE
=1.2 , λ
MM
=1.44 , a=4.231 , b=6.012
xi) pvalue=0.008 ,0.242 for LTR
xii) Only Wald’s test rejects the null hypothesis
xiii) The following estimations are all well – defined in the small case: MLE, Method of moments,
Bayes’ estimator, MAP estimator
xiv) True, as the mean of multiple I.I.D exponential random variables is necessarily a Gaussian
distribution
xv) Chi- squared Test
xvi) If he uses the chi – squared test with bins [ 0,1 ) , [ 1,2 ) , , [ N 1 , N ) , [ N , )for some , then
the two distributions are indistinguishable.
xvii) It will be possible to tell the distributions apart using a QQ- plots given a sufficiently large
number of samples.
Question 4
Document Page
3
i) MLE of ^P is

i=1
i=n
xi
n
ii) Yes
iii) ^p ( 1 ^p ) is a biasestimator of pq
iv) C=n ¿
v) Delta Method alongwith theCentral Limit Theorem
vi) np
vii) A=np ( 1 p )
Question 5
i) Yes
ii) E ( x ) =z ,Var ( x ) =λ5
iii) λ
MLE
= 1
n
i=1
n
xi
2
iv) λ
MM
= E ( x )
v) Cα ,n= ˇxn +5
Question 6
i) True
ii) We are trying to estimate the magnitude and phase changes undergone by x(in the presence of
vector Gaussian noise)
iii) =

i1
n
xi
n
iv) 2 cos x sin x
Document Page
4
v) ~ n , MLE=
i=1
n
¿ ¿
vi) The MLE of θdoes not change if the covariance matrix of the multivariate Gaussian is scaled
s>0
chevron_up_icon
1 out of 4
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]