This document explains how to calculate the line integral of a vector field and its significance. It provides a step-by-step solution and examples. The subject is Vector Calculus.
Contribute Materials
Your contribution can guide someoneโs learning journey. Share your
documents today.
Answer: The given vector field is: F=h4x โ y2sinx,z+ 2ycosx,yi CurveCis a circle with radius 3 centered at (1,3,2),traversed clockwise, from (4,3,2) to (1,6,2).It can be imagined as a portion of circle with radius 3, centered at point (1,3), lying in a planez= 2, parallel toxy- plane.It is plotted and shown in figure-1 below. Figure 1:Path of integration C 1
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
a) In order to evaluate the line integral,we first need to find a parametric equation for curveC. Parametric form of a curve, in terms of a parametert, is given as: r(t) =hx(t),y(t),z(t)i[ฮฑ โค t โค ฮฒ] ForC,zis constant and equalto 2.For a clockwise oriented circle,with radiusacentered at (h, k), the parametric equation is: r(t) =hacost+h,โasint+ki[ฮฑ โค t โค ฮฒ] ForC:h= 1,k= 3,&a= 3.Also,tgoes from 0 to 1.5ฯ,asCmoves from (4,3) to (1,6), clockwise.Therefore, parametric equation ofC, in plane z= 2 is: r(t) =h3 cost+ 1, โ3 sint+ 3,2i[0โค t โค1.5ฯ] Implies, dr=hโ3 sint, โ3 cost,0idt Then line integral is then calculated as: Z C Fยทdr= Z C h4x โ y2sinx,z+ 2ycosx,yi ยท hโ3 sint, โ3 cost,0idt [Put:x= 3 cost+ 1,y=โ3 sint+ 3,z= 2] = Z C h12 cost+ 4โ(โ3 sint+ 3)2sin (3 cost+ 1), 2 + 6 cos (3 cost+ 1)โ6 sintcos (3 cost+ 1), โ3 sint+ 3i ยท hโ3 sint, โ3 cost,0idt [0โค t โค1.5ฯ] = Z2ฯ 0 โ36 sintcost โ12 sint+ 3 sint(โ3 sint+ 3)2sin (3 cost+ 1) โ6 cost โ18 costcos (3 cost+ 1) + 18 costsintcos (3 cost+ 1)dt 2
[Using Integral Calculator, we get] Z1.5ฯ 0 Fยทdrโ1.3337 b Curl is calculated as: curl(F) =โ โx,โ โy,โ โzร h4x โ y2sinx,z+ 2ycosx,yi = หiหjหk โ โx โ โy โ โz 4x โ y2sinxz+ 2ycosxy =โ โy(y)โโ โz(z+ 2ycosx)หi โโ โx(y)โโ โz(4x โ y2sinx)หj +โ โx(z+ 2ycosx)โ โ โy(4x โ y2sinx)หk = (1โ1)หi โ(0โ0)หj+ (โ2ysinx+ 2ysinx)หk =h0,0,0i= 0 c) Zero curlindicates that the field is a conservative field (irrotational) and there exists a potentialfsuch thatF=โf. d) Potential functionf: F=โf 3
Implies, hfx,fy,fzi=h4x โ y2sinx,z+ 2ycosx,yi We have, fz=y=โโf โz=y Integrating we get: f=yz+h(x, y) Now, fy=z+ 2ycosx=โ f=yz+y2cosx+g(x) Taking derivative offwith respect tox: fx=โy2sin(x) +g0 (x) But,fx= 4x โ y2sinx.Comparing we get: g0 (x) = 4x=โ g(x) = 2x2+C1 C1is a constant. Therefore, finally we get: f= 2x2+y2cosx+yz+C1 which is the potential function for the given vector field. e) Integralin a conservative field (with potentialf) along a curveC,by FTC is evaluated as:Z C Fยทdr= Z C โfdr=fbโfa where,aandbare starting and ending points ofC. In the given problem,Cstarts from (4,3,2) and ends at (1,6,2).There- 4
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
fore: Z C Fยทdr=f(1,6,2)โf(4,3,2) = (2x2+y2cosx+yz)(1,6,2)โ(2x2+y2cosx+yz)(4,3,2) = (2 + 36 cos 1 + 12)โ(32 + 9 cos 4 + 6) =โ9 cos 4 + 36 cos 1โ24โ1.3337 f ) Results froma)ande)agree completely.Parte),using FTC,was much easier. References: 1.Stewart, J. (2016).Single variable calculus.Boston, MA: Cengage Learn- ing. 2.Jacks, K. (2012).Vector Calculus.New Delhi, World Technologies. http://public.eblib.com/choice/publicfullrecord.aspx?p=841282. 5