Probability, Statistics, and Estimation Theory Assignment

Verified

Added on  2023/05/30

|11
|2051
|183
Homework Assignment
AI Summary
This document presents solutions to a statistics and probability assignment. The solutions cover a range of topics including calculating marginal probability mass functions, variance, and expectations. The assignment explores concepts like unbiased estimators, mean squared error (MSE), and conditional expectation. Problems involve the analysis of random variables, regression analysis, and the application of statistical principles to solve complex problems. The solutions are detailed, explaining each step to facilitate understanding of the concepts. Furthermore, the assignment delves into the properties of estimators, including consistency and bias, and examines the relationships between different statistical measures. Desklib provides this and similar resources to help students excel in their studies.
Document Page
Solution
Q1a)
E[n-1
i=1
n
XiYi ]
Marginal PME = {x+ y 0 x 1 ,0 y 1
0 otherwise 0
n = 4

0
1

0
1
1
4 ( x + y ) dxdy
= ¼
0
1
( xy + y2
2 |y = oy= 1)dx = ¼ *
0
1
( x + 1
2 ) dx
= ¼*[ x2
2 +1
2 x ¿01
= ¼[1/2 + ½ ] = ¼
b) Variance E[n-1
i=1
n
XiYi ]
= E[n-1
i=1
n
XiYi ]2 – (E[n-1
i=1
n
XiYi ])2
E[n-1
i=1
n
XiYi ]2 =
0
1

0
1
( 1
4 ( x+ y ) )
2
dxdy
= 1
16
0
1
[x2 y+x y2+ y3 ]01dx
= 1/16[
0
1
( x2 + x +1 ) dx= 1
16 [ x3
3 + x2
2 + x ]01 =
11
6 1
16 = 11
96
Variance = 11/96 – 1/16 = 5/96
c) E[n-1
i=1
n
XiYi ]2 =
0
1

0
1
( 1
4 ( x+ y ) )
2
dxdy
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
= 1
16
0
1
[x2 y+x y2+ y3 ]01dx
= 1/16[
0
1
( x2 + x +1 ) dx= 1
16 [ x3
3 + x2
2 + x ]01
=
11
6 1
16 = 11
96
d)
Let Xi = (1, Xi)’ for all i.
Find E[n-1
i=1
n
~X iYi
Marginal PME = {(1+x )+ y 0 x 1 , 0 y 1
0 otherwise 0
n = 4

0
1

0
1
1
4 ( 1+ x + y ) dxdy
= ¼
0
1
( y + xy + y2
2 |y = oy= 1)dx = ¼ *
0
1
(x +3
2 )dx
= ¼*[ x2
2 +3
2 x ¿01
= ¼[1/2 + 3/2 ] = ½
e) Variance E[n-1
i=1
n
~X iYi
= E[n-1
i=1
n
~X iYi ]2 – (E[n-1
i=1
n
~X iYi])2
Document Page
E[n-1
i=1
n
~X iYi ]2 =
0
1

0
1
( 1
4 ( 1+ x+ y ) )
2
dxdy
= 1
16
0
1
[1+2 x+ 2
3 + x+ x2 + 1
3 ]01dx
= 1/16[
0
1
( 1+2 x + 2
3 + x+ x2 + 1
3 ) dx= 1
16 [ x +x2+ 2
3 x+ x2
2 + x3
3 + 1
3 x ]01 = 1
16 [1+1+ 2
3 + 1
2 + 1
3 + 1
3 ]
=23/96
Q2)
Let Y1, Y2, … Yn be i.i.d
E(E( ^Y ) = E (Y 1+ Yn )
n = [ E ( Y 1 ) + . E ( Yn ) ]
n =μ2
^Y is an unbiased estimator
Therefore, the MSE of ^Y is
MSE ^μ2 = E( ( ^Y μ 2 ) 2
=variance ( μ 2 ) = σ 2
n
b) If the estimator equals the parameter then it will be an unbiased estimator.
c)
^μ2 = 1/n
i=1
n
( Yi ^Y ) 2
= n1
n s2
E( ^μ22) = E( n1
n S2
)=n1
n μ2
The variance ^μ2 is calculated by
Variance ( ^μ2 ¿ = var ( n1
n S2
)= ( n1 )2
n2 var ( S2 )
=
( n1 ) 2
n2 2u4
n1 = 2 ( n1 ) u4
n2
Document Page
d)
^μ2 = 1/n
i=1
n
( Yi ^Y ) 2
= n1
n s2
E( ^μ22) = E( c n1
n S2
)=c n1
n μ2
The variance ^μ2 is calculated by
Variance ( ^μ2 ¿ = var ( nc n1
n S2
)=nc ( n1 ) 2
n2 var ( S2 )
= nc
( n1 )2
n2 2 u4
n1 =2 nc ( n1 ) u4
n2
e) Therefore if ^μ2 (c ) the value of c > 1
E( ^μ2μ2 ¿2 = var( ^μ2 ¿+Bia s2
= 2 ( n1 ) μ2
n2 +( n1
n μ2μ2)
= 2(n1)μ4
n2
f) c = 1/n
21
n n¿ ¿
= 2 ( n1 ) u4
n2
g) on average ^μ2 will be closer to μ than S2 if MSE is used as a measure, however ^μ2 is biased
and will on average under estimate μ2.
Q3)
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Let X1, X2,…Xn be i.i.d from N( μ , σ2 ¿ then ^X is an unbiased estimator of
μS2 is an unbiased estimator for σ2
E( ^X ) = E( X 1+ + Xn
n ¿= E ( X 1 ) ++ E( Xn)
n =μ
Then
^X is an unbiased estimator.
Q4)
a) No, there will be equal to each other
b)
E(g(X)|Y, Z) = E(X) + E(Y) = = E(g(X)|Y)
E(X+Y) =
x

y
( x+ y ) P( X =x , Y = y)
=
x

y
P ( X=x , Y = y )+
x

y
yP( X=x , Y = y )
=
x
x
y
P ( X=x ,Y = y ) +¿ ¿
y
y
x
P ( X =x , Y = y )
Document Page
=
x
xP ( X=x ) +
y
yP(Y = y)
= E(X) + E(Y)
c)
Cov(Y1, Y2) = E{(Y1 – EY1)(Y2 – EY2)} = E{(
i=1
n
ai (xiEXi)¿ ¿
=
i=1
n
aibiE ( XiEXi )2=¿
i=1
n
aibiVar( Xi) ¿
Cov *X, - ^X ^X ¿=cov ¿
= [1 – n-1)n-1 – (n – 1)n-2]Var(X) = 0
d)
E( ^X 1 ^X 2 ¿=E( ^X 1)E( ^X 2)=μ 1μ 2
Var[X + Y] = Var(X) + Var(Y) + 2cov(X,Y)
If X and Y are independent then cov(X, Y) = 0
Var( ^X 1 ^X 2 ¿=Var ( ^X 1)+Var ( ^X 2)=σ 12 /n1+ σ 22 /n 2
Q5a)
Document Page
The β0 should be independent and identically distributed with the mean and variance , which is
no the case on this model presentation
ϵ= β0 μ, ϵ whould be independent which is not the case on this model presentation
b)
u = ( β1 - μ β 1)x + ( β0 - μ β 0)
^γ=armin N1

i =1
N
( r 12 γ 1γ 2 x 12 )2
The γ 1is consistent estimator of averageincome difference between urbansuburban individual
and γ 1is consistent estimator average income difference between urban and rural individual
Q6)
a)
( ^β 0 ^β 1 ^β 2 ¿' = arg min
β

i=1
N
( y 1β 01 xβ 2 i )
2
For estimator β vector
`σ = N-1
i=1
N
( yi ^β 0 ^β 1 x i¿ ^β 2 )2
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
b)
β=¿
β ( F ( . ) )= [ xx ' dFx ( x) ]1
xydFx , y ( x , y)
= ¿]-1n1

i=1
n
XiYi
c)
Y1 = β 0 + β 1 xi+ μi
^β 1=¿
^β 1=
β 0 [
i=1
n
xi ]
[
i=1
n
x i2
]+ β 1+
[
i=1
n
x iμi ]

i=1
n
x i2
E[ ^β 1] =
β 0 [
i=1
n
xi ]
β 0 [
i=1
n
x2 i ]+ β 1
d)
Document Page
^β = (X’QX)-1X’QY = (X’QX)-1X’(QX β + ¿
Second matrix X’QX
N-1
i=1
N
X ' QTXi p

E ¿TXi)
The second sum goes in probability as N
Q7)
Let g(X1) = E[Y|X1 = x1]. Find g(x1) for x1 = 1 and x1 = 0
Let h(x1, x2) = E[Y|(X1, X2) = (x1, x2)]. Find the value of this function at the four points in its
domain
a) g(X1) = E[Y|X1 = x1]
marginal PMF = { x+ y 0 x 1 1 , 0 y 1 1
0 otherwise
=
0
1

0
1
( x + y ) dxdy

0
1

0
1
( x + y ) dxdy
=
0
1
(xy + y2
2 |y = oy= 1)dx =
0
1
(x + 1
2 )dx
= [ x2
2 + 1
2 x ¿01
= [1/2 + ½ ] = 1
b) =
0
1
0.33 dx+
0
1
0.17 dx+
0
1
0.31 dx +
0
1
0.19 dx
= 1
c) Fx(x) =
y
fxy( x , y)
Document Page
Fy(x) =
x
fxy( x , y)
f XY(1,1) = 0.33
f XY(0,1) = 0.31
f XY(1,0) = 0.11
f XY(0,0) = 0.19
f XY(1,1) = 0.33
f XY(1,1) = 0.33
f XY(1,1) = 0.33
f XY(1,1) = 0.33
f XY = 1
d)
0
1
1 dx = 1
e) From this argument then E[Y/X1] = E{E[Y]X1, X2]|X1]
Q8)
If ^β 1= c 1
c 2 ^β 1 and ^β 0=c 1 ^β 0
^β 1=

i =1
n
c 1 c 2(xix)( yi y)

i=1
n
c 22 ( xix )2
= c 1
c 2 ^β 1
^β 0=¿ = c 1 ^β 0
β=c 1 ^β 0+ c 1
c 2 ^β 1
b)
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Var( ^β 0 ¿=var (u ) +var ( ^β 1)x2
Var( ^β 0 ¿=
σ2 n1

i=1
n
x i2

i=1
n
( xix )2
chevron_up_icon
1 out of 11
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]