Solved problems on line integrals

Verified

Added on  2021/10/12

|5
|771
|437
AI Summary
This article provides solutions to problems on line integrals of vector fields. It covers topics like calculating line integrals, finding potential functions, and determining if a vector field is conservative. The problems are solved step-by-step, making it easy for students to understand the concepts. The article is relevant for students studying calculus, vector calculus, and engineering mathematics.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Q1)
F(x, y) = (exp(y), xexp(y) – 2ysin(y2)
r(t) = (t3, cos(πt)) where -1 t 1
x = t3, y = cos(πt)
r’(t) = 3t2, -πsin(πt)
F(r(t)) = (exp(y), xexp(y) – 2ysin(y2) * (3t2, -πsin(πt))
=
C

F ( x , y )dr =
1
1
¿ ¿exp(y), xexp(y) – 2ysin(y2) * (3t2, -πsin(πt))dt
=
1
1
3 t2 ¿ ¿
=
1
1
3 t2 exp( cos ( πt ) )π sin ( πt)t3 exp (cos ( πt ) +2 π sin (πt )cos ( πt ) sin ( cos ( πt ) )2
] dt
= [ cos ( 2 πt ) +1
2 +t3 exp ¿ ¿]-11
= 1.03678 – 0.6322
= 0.40458
Q2)
F(x, y, z) = (z-x, -y, z)
r(t) = (t, t, sin(t))
x = t, y = t, z = sin(t)
r’(t) = 1, 1, cos(t)
F(r(t)) = sin(t)-t, -t, sin(t)
=
γ

F ( x , y , z )dr =
0
1
¿ ¿sin(t)-t, -t, sin(t)]*[1, 1, cos(t)]dt
=
0
1
¿ ¿ 1(sin(t)-t)+1* -t +cos(t)* sin(t)]dt

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
=
0
1
¿ ¿ (sin(t) – 2t +cos(t)sin(t)]dt
= [ sin2 ( t ) 2(cos ( t ) +t2 )
2 +C]01
= 0.000304586 – 2*1.99985
= -1.9997
2
Q3)
F(x, y)= [cos)x)-y(x2), xy2,ln(y+1)]
r(t) = (cos(t), sin(t))
X = cos(t), y = sin(t)
r’(t) = [-sin(t), cos(t)]
F(r(t)) = cos(cos(t)) – sin(t)(cos(t))2, cos(t)(sin(t))2 + ln(sin(t) + 1)
=
γ

F ( x , y )dr =
0
1
¿ ¿ cos(cos(t)) – sin(t)(cos(t))2, cos(t)(sin(t))2 + ln(sin(t) + 1)]* [-sin(t),
cos(t)]dt
=
0
1
¿ ¿
[(sin(t)+1)ln(sin(t)+1)+sin(cos(t))- sin(4t)/16 – sin(t)+t/4+C]0π
= -0.034905 + π
4
Q4)
a) U(x, y, z) = (xyz – x2, y2 + z2, 2xz)
u= (
x ,
y ,
z )(xyz x 2, y 2+ z 2 , 2 xz )

x ( xyzx2 ) +
y ( y2+z2 ) +
z (2 xz)
yz−2x+2y+2x
¿ yz +2 y
if r = ( x , y , z ) r=¿ r ¿
Document Page
Then the divergenceof F is 0
b) U(x, y, z) = ln(r)r
u= (
x ,
y ,
z )(ln ( x , y , z ) x + y + z)
=
x ( lnx x + y + z ) +
y ( lny x + y + z ) +
z ( lnz x + y +z )
= xlnx+2( x + y + z)
2 x x + y + z + ylny +2( x + y +z)
2 y x + y +z + zlnx+ 2( x+ y+ z )
2 z x + y +z
= xyzlnx+2 yz ( x + y + z ) + xyzlny+ 2 xz ( x+ y + z ) + xyzlnz +2 zy ( x + y + z )
2 xyz x+ y+ z
if r = ( x , y , z ) r=¿ r ¿
Then the divergenceof F is 1
¿ r ¿ ¿
Q5)
U= (y2z2 + xz, x2 +y, z)
X2 + y2= 4z2
Z = x2 + y2
4
Flux F = u
div(F) = (
x ,
y ,
z )( y2 z2 + xz , x2+ y , z )

x ( y2 z2 + xz ) +
y ( x2 + y ) +
z (z )
= z + 2
Flux of F across Y = Fds(¿ Y )
=
0
1
( z+ 2) dz
= 5/2
X = rcos θ , y=rsinθ
Document Page
If z = 1
X2 + y2 = 4
r = 2
¿
0
2 π

0
2
5
2 rdz
5/2[ r2
2 ]02
= 5

0
2 π
[5]
= 52 π
= 10 π
Q6)
Let take F = (y+z, x + z, x + y)
Curl of F
| i j k

x

y

z
y + z x + z x + y
|
= i ( 11 ) j ( 11 ) + k ( 11 ) =0
F is conservative and F = ( f
x , f
y , f
z )
f
x = y +z=¿ f = ( y+ z ) dx = (y + z)x + g(y, z)
f = (y + z)x + g(y, z)
fy = x + gy(y, z) = x + z
Gy(y, z) = z => g(y, z) = zdy
G(y, z) = zy + l(z)

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
f= x(y+z) + zy + l(z)
fz = x = y + lz(z) = x + y
lz(z) = 0 => l(z) = C
The potential function
f(x, y, z) = x(y+z) + yz + C
1 out of 5
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]