This article covers regression analysis, ANOVA test, and hypothesis testing in statistics. It includes formulas, hypotheses, observations, and conclusions for each test. References are also provided.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
STATISTICS Student Name [Pick the date]
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
Question 1 (a)The frequency distribution of the examination score (b)Histogram (examination score) Comments: Bell curve has not been observed High variation has been observed Presence of negative skew Based on the above underling factors, it can be concluded that examination scores does not show normal distribution (Harmon, 2016). Question 2 1
Supply dependent variable represents as Y Unit price independent variable represented as X. Normal view Formula view a.Sample size = 1 + (Degree of freedom) = 1 + (1+39) = 41 b.Null and alternative hypotheses H0:βUnitprice=0 H1:βUnitprice≠0 2
The computed p value (0.175) is not lower than level of significance (0.05). Hence, insufficient witnesses are present to reject H0and to accept H1(Harmon, 2016). Thereby, slope is termed as insignificant and “unit price and supply is not correlated”. (c)R square (Coefficient of correlation) “The value of R square is quite less because only 4.8% changes in supply will be explained by changes in unit price of the product. Therefore, model is not termed as good fit.” (d)R (Coefficient of determination) “The slope has positive (+ve) sign and thus, the applicable sign for R would also be positive. Hence, R would be +0.219 (Hair, et.al., 2016). The value is quite less (lower than 0.5) and thus, the association of the variable is low which is also evident from the hypothesis testing.” (e)The regression equation can be furnished from the regression model. The unit price is given as = $50,000 and thus, x (‘000) = 50 Further, The supply obtained is 55.526 thousands units or 55526 units. 3
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Question 3 ANOVA Single Factor Test Hypothesis testing H0:μA=μB=μC=μD(Means are equal for all four programs) H0:Atleastoneprogramgroupmeanisnotequal. Significance level =0.05 (Given) Test statistic (F value) = 6.14 P value (From above) = 0.006 Observation: P value<< significance level (0.006 <0.05) Result: Reject null hypothesis and accept alternative hypothesis Conclusion: “At least one program group mean is not equal” 4
Question 4 (a)Regression output Equation of least square regression line (b)Hypotheses Significance level = 0.10 (Given) Test statistic (F) = 6.7168 Further, significance F = 0.0526 5
Observation: significance F << significance level (0.0526 <0.05) Result: “Reject null hypothesis and accept alternative hypothesis(Hair, et.al., 2016)” Conclusion: “Model is significant” (c)Hypothesis testing Significance level = 0.10 For variable price: Observation: p value << significance level (0.036 <0.10) Result: “Reject null hypothesis and accept alternative hypothesis(Flick, 2015)” Conclusion: “Price is significant to sale” For variable advertising expenditure: 6
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
Observation: p value >> significance level (0.97 >0.10) Result: Fails to reject null hypothesis and thus, cannot accept alternative hypothesis Conclusion: “Advertising expenditure is not significant to sale” (d)The new model will be produced by eliminating the advertising expenses from the mode. Equation of least square regression line (e)“Slope indicates that when there is increase in price by $1 then the corresponding sale would also increase by 41.60 units.” 7
Reference Flick, U. (2015)Introducing research methodology: A beginner's guide to doing a research project.4th ed. New York: Sage Publications. Hair, J. F., Wolfinbarger, M., Money, A. H., Samouel, P., and Page, M. J. (2016)Essentials of business research methods.2nd ed. New York: Routledge. Harmon, M. (2016) Hypothesis Testing in Excel - The Excel Statistical Master. 7th ed. Florida: Mark Harmon. 8