Limited-time offer! Save up to 50% Off | Solutions starting at $6 each  

Fundamental Theorem of Calculus PDF

Added on - 24 Jan 2022

Trusted by 2+ million users,
1000+ happy students everyday
Showing pages 1 to 8 of 185 pages
ii
Contents
1Introduction1
1.1How to Use the Study Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
1.2Keys to Success in Studying Mathematics. . . . . . . . . . . . . . . . . . . . . . .3
1.3Preparing for the Examination. . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2Functions and Models4
2.1Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2.2Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2.3Principles of Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2.4Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
2.5The Way Forward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
3Limits and Derivatives7
3.1Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
3.2Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
3.3Prescribed Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
3.4Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
3.4.1Introduction to the Limit Concept. . . . . . . . . . . . . . . . . . . . . . .8
3.4.2Definition of a Limit:Left- and Right-hand Limits . . . . . . . . . . . . . .10
3.5Worked Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
3.5.1Limits asxc(cR). . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
3.5.2Limits asx→ ±∞. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
3.5.3Limits Involving Absolute Values. . . . . . . . . . . . . . . . . . . . . . .18
3.5.4Left-hand and Right-hand Limits. . . . . . . . . . . . . . . . . . . . . . .21
3.5.5Limits Involving Trigonometric Functions. . . . . . . . . . . . . . . . . . .24
3.5.6The Squeeze Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
3.5.7Theε-δDefinition of a Limit (Read only for other modules eg MAT2615).33
3.5.8Continuity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
4Differentiation Rules46
4.1Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
4.2Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
4.3Prescribed Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
4.4The Derivative. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
4.4.1Introducing the Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
4.4.2Definition of the Derivative. . . . . . . . . . . . . . . . . . . . . . . . . . .49
4.5Worked Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
4.5.1Differentiation from First Principles (derivative as a Function). . . . . . .51
4.5.2Basic Differentiation Formulas. . . . . . . . . . . . . . . . . . . . . . . . .54
4.5.3Derivatives of Trigonometric Functions and Inverse Trigonometric Functions61
MAT1512iii
4.5.4Derivatives of Exponential and Logarithmic Functions. . . . . . . . . . . .66
4.5.5Logarithmic Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
4.5.6Implicit Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
4.5.7Tangents and Normal Lines . . . . . . . . . . . . . . . . . . . . . . . . . . .80
4.5.8The Mean Value Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . .89
5Integrals93
5.1Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
5.2Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
5.3Prescribed Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
5.4Worked Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
5.4.1Antiderivatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
5.4.2The Definite Integral and the Fundamental Theorem of Calculus – Part II .98
5.4.3The Definite Integral and the Area Between the Curve and thex-axis. . .99
5.4.4The Definite Integral and Area Under the Curve. . . . . . . . . . . . . . .102
5.5The Mean Value Theorem for Definite Integrals . . . . . . . . . . . . . . . . . . . .107
5.6The Fundamental Theorem of Calculus – Part I . . . . . . . . . . . . . . . . . . . .109
5.7Integration in General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
5.8Indefinite Integrals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
5.9The Substitution Rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
5.10 Integration of Exponential and Logarithmic Functions. . . . . . . . . . . . . . . .124
5.11 Review of Formulas and Techniques of Integration. . . . . . . . . . . . . . . . . .125
6Differential Equation, Growth and Decay and Partial Derivatives/Chain Rule 132
6.1Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132
6.2Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132
6.3Prescribed Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
6.4Worked Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
6.4.1Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
6.4.2Growth and Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143
6.4.3Partial Derivatives/Chain Rule. . . . . . . . . . . . . . . . . . . . . . . . .153
ASequence and Summation Notation169
BMathematical Induction174
iv
Contents
MAT1512v
Study Unit 1
Introduction
Calculusis a set of formal rules and procedures.It gives you the tools you need to
measure changes both qualitatively and quantitatively.Wikipedia(www.wikipedia.org
) defines calculus as a branch of mathematics that includes the study of limits, deriva-
tives, integrals, and infinite series, which constitute a major part of modern university
education.Calculus has widespread applications in science and engineering and is used
to solve complex and expansive problems for which algebra alone is insufficient. It builds
on analytical geometry and mathematical analysis and includes two major branches –
differential calculus and integral calculus – which are related through the Fundamental
Theorem of Calculus. Differential calculus explores and analyses rates of change quanti-
tatively and qualitatively. Integral calculus deals with the analysis (quantitatively and/or
qualitatively) of how quantities or measures of values accumulate or diminish over time.
The two processes – differentiation and integration – are reciprocal.
The purpose of this module is to equip you, the student, with those basic skills in differential
and integral calculus that are essential for the physical, life and economic sciences. Most
of the time you will be dealing with functions. Basically, a function is a generalised input-
output process that defines the mapping of a set of input values to a set of output values.
It is often defined as a rule for obtaining a numerical value from another given numerical
value. You are also going to have to develop a very large repertoire of methods for depicting
functions graphically/geometrically.
This course is built around your prescribed book. The purpose of this study guide is to
guide you through those parts of the prescribed book that you must study for this module,
and to provide you with many additional worked examples. The prescribed book is:
James Stewart Calculus
Metric Version 8 Edition
Early Transcendentals
Cengage Learning
ISBN 13:978-1-305-27237-8
MAT15121
1.1How to Use the Study Guide
From now on we will refer to the prescribed book as “Stewart”.The study guide must
always be used in conjunction with the prescribed textbook, because it is not a complete set
of notes on the book. Chapters 1 to 4 of this study guide contain many additional worked
problems, taken from past examination papers and assignments.Before going through
them, study the relevant parts in Stewart, and do the examples and some of the exercises
in Stewart. Also, before going through our solution to a problem in the study guide, try
solving it yourself.Remember that reading maths often means reading the same
thing over and over again.
We have included numerous worked examples for you.These are designed to stimulate
your thinking in such a way that you will come to appreciate and master the delicate
beauty and intricacies of the subject.All you have to do is keep going!Follow all the
instructions given.Try to write down all the answers to the activities in full.This is
extremely important, as a major part of learning mathematics isthinkingandwriting
down what you think.By writing everything down, you will develop the essential skill
ofcommunicating mathematics effectively. The other reason for writing down your
answers, is to prevent you from losing your train of thought about a concept or mathemat-
ical idea. If this happens, it takes a while to get your reasoning back to the same point.
If you have everything written down, you can also go back the next day and check your
reasoning. Learning mathematics is an activity, and you will only learn by doing. Because
you will be thinking about the problems, you will, in most cases, be able to determine by
yourself whether your reasoning is right, or not.
Your assignments are included inTutorial Letter 101. Attempt these once you have com-
pleted all the related activities in your study guide. Spend a part of your time each day
doing some of the questions, and a part studying new material. Being able to do an as-
signment is proof that you have mastered the work of that particular section. InTutorial
Letter 101we have indicated which assignments you should submit for evaluation.
Also remember that statements, theorems and definitions are the building blocks of your
mathematical language – you cannot learn anything without knowing the basic facts. Begin
by reading the preface of your prescribed book. This should give you a good idea of the
importance of the subject you are about to study.
2
desklib-logo
You’re reading a preview
Preview Documents

To View Complete Document

Click the button to download
Subscribe to our plans

Download This Document